Zika Virus: Adapting responses to a rapidly changing epidemic

Thursday, May 5, 2016

Charsey Porse, PhD MPH
Sarah Lewis, MD MPH
Sharon Messenger, PhD
Dongxiang Xia, MD

Objectives

1. The participant will be able to describe the clinical and epidemiologic features of Zika and its prevention;
2. The participant will learn about the biology and distribution of and public agency responses to invasive Aedes mosquitoes in California;
3. The participant will learn about the available diagnostic tests for Zika and other arboviruses.
Case 1: Dianna

- 40-year-old woman, 40 weeks pregnant
- Traveled to Costa Rica at 30 weeks gestation
- Presented to her obstetrician with total body rash 3 days after return; no fever or other symptoms
- Fetal ultrasound at 36 and 40 weeks GA showed normal head circumference
- Serum for Zika virus testing was collected at 36 weeks
- Results received on her due date were positive for anti-Zika virus antibodies by PRNT

Case 1: Dianna

- Baby born at 40 weeks, 6 days gestation
 - Apgar scores 1min 8/ 5min 9
 - Birth head circumference 35cm, 53 percentile
 - Birth weight 9.3lbs, length 55.75cm
- Specimens collected for Zika testing
 - Placenta, cord blood, cord tissue, neonate blood
Overview

- What and where is Zika virus?
- Non-vector-borne Zika virus transmission
- Clinical syndromes and complications
- Laboratory diagnosis of Zika virus infection
- Preventing local Zika virus transmission

What is Zika Virus?

- Zika virus is a mosquito-borne flavivirus similar to dengue, yellow fever, West Nile and Japanese encephalitis viruses
 - *Aedes aegypti* is the primary vector
- First isolated from a sentinel rhesus monkey placed in the Zika Forest of Uganda in 1947
- First isolated from humans in 1952 in Uganda and Tanzania
- Until 2007, only isolated, sporadic cases were reported from Africa and Asia
Known Geographic Extent of Zika Virus from 1947 through 2006

Zika Spreads to Pacific Islands

- 2007: First major outbreak of Zika on the island of Yap
 185 suspect cases
- 2013-2014: Outbreak in French Polynesia
 8750 reported cases; 74 with severe neurologic symptoms
- 2014: Cases reported from New Caledonia, Cook Islands, Easter Is.
Countries, Territories and Areas with Autochthonous Zika Virus Circulation (2007-2016)

Zika Reported from Brazil

• In May 2015, an outbreak of Zika was identified in several northeastern states of Brazil; by December 2015, Zika had spread to 18 states.

• A retrospective analysis of positive dengue test samples found Zika positive results evident as early as February 2015.

• The virus may have been introduced into Brazil in 2014 by persons attending the World Soccer Cup or by members of a Polynesian team attending an international canoe race.

• *Aedes aegypti* is the primary vector in the Brazilian outbreak, but *Aedes albopictus* may also be playing a role.

• An estimated 1.5 million cases have been reported through January 2016.
Confirmed Zika Cases in Mexico by State
January 1, 2016 – May 2, 2016

- Sonora
- Chihuahua
- Coahuila
- Durango
- Nuevo León
- Yucatán
- Oaxaca
- Guerrero
- Chiapas
- Colima
- Jalisco
- Nayarit
- Tabasco
- Puebla
- Morelos

Confirmed cases:
- 0 confirmed cases
- 1 – 25 confirmed cases
- 26 – 50 confirmed cases
- 51 – 100 confirmed cases
- More than 100 confirmed cases

Data provided by the Mexican Ministry of Health

Imported Zika in the United States, 2015-2016

- District of Columbia
- No reported cases
- 1-4 reported cases
- 5-15 reported cases
- 16-30 reported cases
- >30 reported cases

N = 426
43 Travel-Associated Zika Cases in California (as of April 29, 2016)

<table>
<thead>
<tr>
<th>Year</th>
<th>Confirmed Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>2015</td>
<td>11</td>
</tr>
<tr>
<td>2016</td>
<td>32</td>
</tr>
</tbody>
</table>

- Cases reported from 13 counties
 - Including 6 counties with invasive *Aedes* mosquitoes
- 2015-2016 cases traveled to: El Salvador (13), Guatemala (7), Brazil (3), Colombia (3), Puerto Rico (3), Mexico (2), Honduras (3), Venezuela (2), Haiti (2), Costa Rica (2), Kiribati (1), Samoa (1), and Dominican Republic (1)
 - Two case-patients traveled to more than one location
- Case numbers updated every Friday on CDPH Zika webpage

Aedes aegypti and *Aedes albopictus* Mosquitoes Detection Sites in California

Unincorporated Census-Designated Places
85 cases of chikungunya were reported in residents of Los Angeles in 2015

51% of those cases returned to Los Angeles potentially viremic (within 7 days of symptom onset)

26 potentially viremic cases reside in a city with known invasive Aedes

36% (31) of chikungunya cases from Los Angeles reported travel/exposure in Mexico
11 cases of dengue were reported in residents of San Diego in 2015

91% of those cases returned to San Diego potentially viremic (within 5 days of symptom onset)

2 potentially viremic cases reside in a city with known invasive Aedes

27% (3) of dengue cases from San Diego reported travel/exposure in Mexico

San Diego has reported 1 Zika case that was potentially viremic who resides in a city with known invasive Aedes

Potential for local transmission is low

- A viremic person would need to return to a region where there are Aedes mosquitoes and be bitten by an Aedes that would live long enough to become infectious and bite another person who then becomes infected

- Mitigating factors:
 - Patchy Aedes aegypti and albopictus distribution in CA
 - Use of AC, window and door screens
 - Better water management than in other countries
 - Good mosquito control!

- If an outbreak were to occur, it would likely be limited in scope and duration

- Outbreaks of dengue and chikungunya elsewhere in the US have been contained

- Therefore the US is unlikely to experience the same extensive outbreaks currently being experienced in Latin America
Case 2: Phillip

- 29-year-old male, no past medical history
- Traveled to Colombia in January
- 1 week before returning home developed maculopapular rash, headache, and joint pain.
- Had unprotected vaginal sex with his girlfriend day 9 and day 11 after symptom onset
- Serum collected on day 9 after symptom onset for Zika virus tested positive for anti-Zika antibodies by PRNT

Case 3: Robyn

- 30-year-old female, no past medical history
- No history of travel or blood transfusion
- Unprotected vaginal sex with her boyfriend, who just returned from Colombia with a rash
- Developed symptoms 5 days after sexual exposure: maculopapular rash, fever, arthralgia, conjunctivitis, headache.
- Serum collected 8 days after symptom onset tested positive for anti-Zika antibodies by PRNT
Sexual Transmission of Zika Virus

California Department of Public Health

Public Health Reports First Confirmed Zika Virus Case Acquired Through Sexual Transmission in California

Date: 3/25/2016
Number: 16-016
Contact: Onlitta Thomas (916) 440-7259
SACRAMENTO -

California Department of Public Health (CDPH) Director and State Public Health Officer Dr. Karen Smith today announced the first confirmed case of Zika virus acquired in California. This case involves transmission of Zika virus through sexual contact with a Zika infected partner who returned from a country where Zika virus was circulating, not from a mosquito bite. The woman who was infected was not pregnant and had not traveled out of the country. She and her partner have fully recovered.

Brazil confirms blood-transfusion Zika; PAHO calls for global support

Brazilian health officials today confirmed the first known cases of Zika infection from blood transfusions, a day after the Pan American Health Organization (PAHO) put out a call for more international help in battling the outbreak.

In other developments, Dallas officials issued a follow-up on a recent sexual transmission case, groups announced new research pushes, and Florida declared a public health emergency to better help some of its counties prepare.
Signs and Symptoms

- Similar to other arboviruses
- About 20% estimated to experience symptoms
- Onset 3-12 days after exposure
- Usually last up to one week

Clinical Characteristics of 31 Patients with Confirmed Zika Virus Disease on Yap Island during the Period from April through July 2007.

<table>
<thead>
<tr>
<th>Sign or Symptom</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macular or papular rash</td>
<td>28 (90)</td>
</tr>
<tr>
<td>Fever*</td>
<td>20 (65)</td>
</tr>
<tr>
<td>Arthritis or arthralgia</td>
<td>20 (65)</td>
</tr>
<tr>
<td>Nonpurulent conjunctivitis</td>
<td>17 (55)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>15 (48)</td>
</tr>
<tr>
<td>Headache</td>
<td>14 (45)</td>
</tr>
<tr>
<td>Retro-orbital pain</td>
<td>12 (39)</td>
</tr>
<tr>
<td>Edema</td>
<td>6 (19)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (10)</td>
</tr>
</tbody>
</table>

* Cases of measured and subjective fever are included.

DDx of Acute Infection

- Other mosquito-borne diseases: **dengue, chikungunya**, malaria
- Other viruses: rubella, measles, parvovirus, acute HIV infection
- Bacterial infections: leptospirosis, rickettsia, GAS infections, syphilis

<table>
<thead>
<tr>
<th>Features</th>
<th>Zika</th>
<th>Dengue</th>
<th>Chikungunya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Rash</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Myalgia</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Headache</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Shock</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table courtesy of Dr. Ingrid Rabe, CDC

Management of Symptomatic Infection

- No antiviral treatment available
- Supportive care: rest, fluids, and acetaminophen
- Avoid aspirin and NSAIDs
- Protect others:
 - Avoid mosquito bites
 - Prevent sexual transmission
 - Defer blood donation
Guillain-Barré Syndrome (GBS)

- Autoimmune neurologic disease causing weakness and/or paralysis
 - Respiratory weakness needing ventilatory support in 10-30%
 - Autonomic dysfunction in 70%; can lead to sudden death
- 1-2 cases/100,000 per year worldwide
- Surveillance is difficult
- Treatment can be expensive and hard to access

GBS and Zika

- French Polynesia 2013–2014 (8,752 cases)
 - 42 of these diagnosed with GBS (20x increase)
- Brazil January–July 2015 (500,000-1.5mil cases)
 - 121 cases of neurological manifestations including GBS, all with history of rash and travel to areas with known Zika outbreaks
- El Salvador December 1, 2015-January 30, 2016
 - 104 cases of GBS
- Venezuela:
 - 252 cases of GBS
- Puerto Rico November 2015–January 2016 (155 cases)
 - 1 case hospitalized for GBS
GBS and Zika

Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study

• GBS cases were significantly more likely to have evidence of recent Zika infection than matched controls
• GBS can occur after asymptomatic Zika virus infection
• Patients with GBS and Zika may be have axonal type of GBS, rapid plateau, lasting deficits
• Rate of GBS after Zika may be 0.24/1000 cases
 – Similar to estimated rate for Campylobacter infection

Cao-Lormeau, Blake, et al: Weekly cases of suspected Zika virus infections and Guillain-Barré syndrome in French Polynesia between October, 2013, and April, 2014
Zika Virus Associated with Meningoencephalitis and ADEM

Microcephaly and Zika

Definition: Head circumference at birth <2 standard deviations below mean for gestational age and sex

Causes:
- Congenital infection: e.g. syphilis, rubella, toxoplasmosis
- Genetic disorders and inherited mutations
- Other brain injury: hypoxia, drugs, toxins, FAS

Outcomes:
- Range from normal to severe, including death
- Can include seizures, visual or hearing deficits
- Correlate with severity of microcephaly

Epidemiology:
- 2-12/10,000 live births in US, 2/10,000 in California
Microcephaly and Zika

Location of Microcephaly Cases

States with Local Zika Cases

Week of Gestation at the Time of ZIKV Infection and Abnormal Ultrasonographic and Doppler Findings.

- 88 pregnant women with rash enrolled 9/15-2/16.
 - 72 (82%) positive for ZIKV in blood, urine, or both.
 - 12(29%) of 42 with Zika had US abnormality vs 0% women without Zika

Zika Virus (ZIKV) Infects Human Cortical Neural Progenitors (hNPCs) and Attenuates Their Growth*

Neonatal Zika

- Two cases in French Polynesian outbreak documenting perinatal transmission
 - One infant with thrombocytopenia and rash
 - Both recovered fully without known sequelae
Laboratory testing indications

- Individuals with symptoms of acute Zika virus infection that occur within 2 weeks of exposure *
- Asymptomatic pregnant women 2-12 weeks after exposure during pregnancy or up to 8 weeks prior
- Infants with microcephaly or intracranial calcifications after maternal exposure or with confirmed maternal infection
- Other considerations:
 - sexual partners of case-patients with no travel history
 - GBS after potential Zika virus exposure

*Symptoms of acute Zika virus infection are defined as 1 or more of the following: fever, maculopapular rash, arthralgia, or conjunctivitis

VRDL Arbovirus Testing

- The VRDL has maintained a large number of assays to test for a broad array of arboviruses.
- VRDL has been actively working on laboratory testing for Zika and other exotic mosquito borne diseases such as dengue and chikungunya over the last two years building upon experience with West Nile virus testing.
- Diagnosis of specific arboviral diseases is complex and often requires a combination of rule in and rule out of several arboviruses.

<table>
<thead>
<tr>
<th>Family</th>
<th>Virus</th>
<th>Sample type</th>
<th>EIA IgM</th>
<th>EIA IgG</th>
<th>IFA IgM</th>
<th>IFA IgG</th>
<th>RT-PCR</th>
<th>Western Blot</th>
<th>PRNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaviviridae</td>
<td>WNV Serum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSF Serum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dengue Serum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLE Serum</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow Fever Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zika Serum</td>
<td>X</td>
<td>X</td>
<td>X**</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Togaviridae</td>
<td>WEE Serum</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chikungunya Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bunyaviridae</td>
<td>Jamestown Canyon Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA encephalitis Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*RT-PCR also can be performed for CSF **RT-PCR also can be performed for CSF, urine and amniotic fluid
How VRDL Can Assist in Confirming an Arbovirus Case

Why lab confirm a case?

- Most commercial assays screen for IgM in a single serum

Problems with this approach are:

- **Lack of specificity:** There is a high degree of serologic cross-reactivity between Flaviviruses* (WNV vs SLE vs Dengue vs...another flavivirus)
- **Timing:** Flavivirus IgM may persist for months and confound interpretation; IgM may not distinguish from last year’s infection

Therefore, detection of IgM antibodies to a flavivirus in CSF or serum with no other testing = **Probable** case

- **Serologic specificity** requires the Plaque Reduction Neutralization Test (PRNT)
 - PRNT detects neutralizing Ab, is best on paired sera, and takes ~ one week to perform

- To establish **timing** of infection: Test paired A/C samples or perform PCR or other method of direct detection

* similar issues exist within other arbovirus families

2015 CSTE Arbovirus Case Definition:
Laboratory criteria for diagnosis

What is needed from the lab to help confirm an arbovirus case?

Answer: Evidence of recent infection with a specific arbovirus

- **Direct Detection of the virus establishes both timing and specificity:**
 - Detect viral nucleic acid (PCR)
 - Isolate the virus
 - Detect viral antigen

 By any of these methods OR

- **Serological evidence of recent infection with a specific arbovirus**
 - 4-fold rise in antibody titers in paired sera (e.g., IgM, IgG, or Neut Ab by EIA, IFA, or PRNT), or
 - IgM(+) serum and PRNT (+) in the same or a later specimen or
 - IgM(+) CSF* and IgM(-) CSF for other endemic arboviruses
Studies from previous outbreaks of Zika Virus were the basis for guidance on diagnostic testing

Prior to Yap Island outbreak, only 14 confirmed human cases had been described

<table>
<thead>
<tr>
<th>Outbreak (Study Reference)</th>
<th>Year</th>
<th>Study size: # cases lab tested</th>
<th># PCR(+) tested</th>
<th>% PCR(+)</th>
<th>% IgM+</th>
<th>% IgG+</th>
<th>PRNT ZIKV ≥ 4X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yap Island (Lanciotti, 2008)</td>
<td>2007</td>
<td>185</td>
<td>17/157</td>
<td>10.8%</td>
<td>108/108</td>
<td>100%</td>
<td>49/108</td>
</tr>
<tr>
<td>French Polynesia (Musso, 2015)</td>
<td>2013-2014</td>
<td>885</td>
<td>210/748 serum</td>
<td>28.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>182/319 saliva</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Caledonia (Gourinat, 2015)</td>
<td>2014</td>
<td>6</td>
<td>4/6 serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easter Island (Tognarelli, 2016)</td>
<td>2014</td>
<td>89</td>
<td>51/89 saliva</td>
<td>57.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easter Island (Tognarelli, 2016)</td>
<td>2014</td>
<td>89</td>
<td>51/89 saliva</td>
<td>57.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pernambuco, Brazil (Pessoa, 2016)</td>
<td>2015</td>
<td>77</td>
<td>31/77 saliva</td>
<td>40.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ Consistently, mean time point of illness to detect Zika virus RNA by RT-PCR = 3.5 days

Diagnostic Testing for Zika Virus
Rationale for the Testing Guidance

- Zika viraemia is lower and of shorter duration
 - Viral loads estimated to be 2 - 3.5 X 10^4 viral particles/ml (Concia et al., 2008)
 - Viral loads for dengue and chikungunya are estimated to be ~10^7 - 10^8
 - Studies indicate virus is no longer detectable at or shortly after symptom onset
 - Most detections of Zika virus by RT-PCR are within the first 3 days of illness onset
 - Clinical sensitivity of RT-PCR can be poor
- Zika-specific IgM can appear later in course of infection
 - Samples collected <7 days after onset can be falsely negative
 - It is not known, but it is believed that Zika virus IgM can persist as long as dengue virus IgM (~12 weeks)
 - For individuals with no symptoms (no onset date), 2 weeks after exposure was chosen to ensure that IgM should be detectable if infected with Zika virus.
Flavivirus-specific antibodies cross-react: the need for confirmatory testing

- Flavivirus antibodies directed against the highly immunogenic envelope protein contain both flavivirus cross-reactive and virus-specific epitopes
- Yap Island outbreak initially indicated to be dengue based upon IgM test results
 - Neutralization studies from Yap outbreak illustrate the complexity of the immune response in primary versus secondary flavivirus exposures

Availability of recommended tests for the detection of Zika virus

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>CDC</th>
<th>VRDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred test in acute samples</td>
<td>RT-PCR panel</td>
<td>RT-PCR panel — validated Feb 23<sup>†</sup> EIA Triplex RT-PCR<sup>‡</sup> — adopted April 18<sup>th</sup></td>
</tr>
<tr>
<td>≤ 7 days post onset</td>
<td>• Serum</td>
<td>• Serum</td>
</tr>
<tr>
<td></td>
<td>• CSF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Urine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amniotic fluid</td>
<td>• CSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Urine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Amniotic fluid</td>
</tr>
<tr>
<td>Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td>IgM MAC ELISA<sup>†</sup></td>
<td>IgM IFA<sup>§</sup> — validated March 4<sup>th</sup> IgM MAC ELISA — TBD</td>
</tr>
<tr>
<td>>3 days post onset</td>
<td>• Serum</td>
<td>• Serum only</td>
</tr>
<tr>
<td></td>
<td>• CSF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amniotic fluid</td>
<td></td>
</tr>
<tr>
<td>Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutralizing Ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRNT confirmation</td>
<td>PRNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Serum</td>
<td>• Serum only</td>
</tr>
<tr>
<td></td>
<td>• CSF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amniotic fluid</td>
<td></td>
</tr>
</tbody>
</table>

[†] Approved for EUA on February 26, 2016
[‡] Approved for EUA on March 17, 2016
[§] IgM EIA — under evaluation to increase surge testing capacity
Zika Testing Algorithms

Symptomatic with International /Specific US Travel

Serum must be collected < 12 weeks after symptom onset

- Serum and Cord Blood*
 - RT-PCR*
 - Zika/dengue/chikungunya
 - Zika virus NEG = complete serology before reporting
 - IgM testing
 - Zika/dengue/chikungunya
 - NO IgM = NEGATIVE
 - ZIK & for DEN
 - IgM = Flavi virus PRNT
 - CHIK IgM = Alphavirus PRNT

Negative PCR does not rule out Zika virus infection

Zika Testing Algorithms

Asymptomatic Pregnant women with International /Specific US Travel

Serum must be collected ≥ 2 and ≤ 12 weeks after potential exposure

- Serum
 - Zika IFA IgM
 - NEGATIVE
 - VIRAL FLAVIVIRUS PRNT

Exposure includes travel to an area with ongoing Zika virus transmission or unprotected sex with a symptomatic male partner with relevant travel history.
Zika Testing Algorithms

ANY IgM detection → PRNT

Serum

- CHIK IgM+
 - ZIKA &/or DEN IgM+
 - **Alphavirus PRNT**
 - CHIK ≥ 4X titer
 - CONFIRMED CHIKUNGUNYA CASE
 - CHIK NEGATIVE
 - NEGATIVE
 - CHIK NEGATIVE
 - ZIKA & DENV NEGATIVE
 - NEGATIVE
 - ZIKA ≥ 4X titer
 - CONFIRMED DENGUE CASE
 - ZIKA < 4X titer
 - CONFIRMED ZIKA CASE
 - UNSPECIFIED FLAVIVIRUS

- **Flavivirus PRNT**

Other sample types

- **Urine and Amniotic Fluid***
 - Zika RT-PCR only
- **Other Tissue***
 - Send to CDC

*Urine must be collected < 30 days after onset. Other samples determined on case by case basis.

Detection of Zika virus RNA in blood and urine specimens

from Gourinat et al. 2007. EID 21 (1):84-86
Zika Virus Testing at VRDL Test Volume

Zika Specimens Received Per Week

- CDC recommendations allow for testing asymptomatic pregnant women

<table>
<thead>
<tr>
<th>Week</th>
<th>Asymptomatic</th>
<th>Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>03/20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>04/20</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>05/20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>06/20</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>07/20</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>08/20</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>09/20</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>10/20</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>11/20</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>12/20</td>
<td>110</td>
<td>55</td>
</tr>
<tr>
<td>13/20</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>14/20</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>15/20</td>
<td>140</td>
<td>70</td>
</tr>
<tr>
<td>16/20</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>17/20</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>18/20</td>
<td>170</td>
<td>85</td>
</tr>
<tr>
<td>19/20</td>
<td>180</td>
<td>90</td>
</tr>
<tr>
<td>20/20</td>
<td>190</td>
<td>95</td>
</tr>
<tr>
<td>21/20</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

- 91.3% patients tested are female
- 84% of samples tested – asymptomatic pregnant women
- ~20% of symptomatic cases tested are pregnant
Turnaround times (TAT) improved as testing algorithms evolved

Symptomatic

Asymptomatic

Test Results Summary
As of April 15th: 1,442 patients tested

Zika virus lab confirmed cases: 34 cases
(43 cases as of April 29th)

Percentage of Zika virus lab confirmed cases:
• Asymptomatic pregnant women: <0.2%
• Symptomatic cases: 15.7%

Viruses detected in symptomatic cases:
• 34 Zika virus
• 24 dengue virus
• 3 chikungunya
• 9 flavivirus (DEN:ZIKA titers < 4X difference)
Diagnostic testing for Zika virus is evolving

- **RT-PCR**
 - Among 35 confirmed Zika cases tested at VRDL,
 - 17 sera collected ≤7 days post onset (po)
 - 4 urines collected <30 days po
 - 6/17 (35%) sera positive
 - 3 of 4 (75%) urines positive

 Clinical sensitivity of PCR is low

- **IgM**
 - Within 7 days po, 12/17 IgM+ (70.6%)
 - ~30% false NEG
 - ~10% of patients tested have POS IgM
 - Symptomatic: 86% will be confirmed
 - Asymptomatic: 6% will be confirmed

 Clinical sensitivity of IgM problematic < 7 days; lack of specificity requires PRNT

- **PRNT confirmation**
 - 6 patients with POS Zika IgM & 3 with POS DEN IgM were unresolved – unspecified flavivirus
 - ZIKA PRNT titers were POS but <4X

 PRNT specificity is high with primary exposures; low with secondary exposures

Public Health Surveillance in California

Reporting of notifiable diseases is mandated by state law (Title 17 CCR)
Chikungunya, dengue, and Zika are reportable.

Suspect dengue, chikungunya and Zika cases are reported by physicians or laboratories to their local health department (LHD). LHD follows up and reviews cases (who, what, where, when).

LHD reports to California Department of Public Health (CDPH). Case is reviewed by subject matter expert and classification finalized.

CDPH reports confirmed and probable cases to CDC
Reporting: Zika cases

https://www.cdph.ca.gov/pubsforms/forms/Pages/CDReport-Forms.aspx

Reporting: Birth Defects

http://www.cdph.ca.gov/programs/CBDMP/Pages/default.aspx
Challenges

- Some Zika patients (similar to dengue and chikungunya patients) are potentially viremic after return from travel
- Lag-time in testing and reporting may delay detection of potential local transmission
- Need coordination of local health departments and vector control agencies to reduce risk
- As commercial laboratories begin Zika testing, these challenges will be increased, although turn around time may improve for patients

Mosquito Control

- **Container Breeders**
- **Peridomestic**
- **Cryptic larval sources**
- **Egg to adult in 6-10 days**
- **Desiccation-resistant eggs**
Prevention

No vaccine exists to prevent Zika virus infection
Prevent Zika by avoiding mosquito bites
Mosquitoes that spread Zika virus bite mostly during the daytime

Protect yourself from mosquito bites

- Use insect repellents
- When weather permits, wear long-sleeved shirts and long pants.
- Use air conditioning or window/door screens to keep mosquitoes outside. If you are not able to protect yourself from mosquitoes inside your home or hotel, sleep under a mosquito bed net.
- Help reduce the number of mosquitoes inside and outside your home or hotel room by emptying standing water from containers such as flowerpots or buckets.

If you have Zika, follow these steps to protect others from getting sick

- During the first week of infection, Zika virus can be found in the blood and passed from an infected person to another mosquito through mosquito bites. An infected mosquito can then spread the virus to other people.
- To help prevent others from getting sick, avoid mosquito bites during the first week of illness.

Guidance for those pregnant or seeking pregnancy

- Postpone travel and avoid mosquito bites
- Breast feeding still recommended
- Prevent sexual transmission from male partners: condoms or abstinence
- Delay conception for 8 weeks after exposure or illness
Prevention of sexual transmission

• Men exposed to Zika virus* with no symptoms should:
 – Abstain or use condoms for 8 weeks after exposure with all partners
 – Abstain or use condoms with any pregnant partner for the remainder of the pregnancy
• Men exposed to Zika virus* who develop symptoms or have confirmed Zika virus infection should:
 – Abstain or use condoms with all partners for 6 months after exposure
 – Abstain or use condoms with any pregnant partner for the remainder of the pregnancy
• Testing for the purpose of assessing risk for sexual transmission is not recommended.

Transfusion and Transplant Safety

• AABB and FDA: www.redcross.org
 – Wait 28 days before donation
 – Report illness within 14 days
 – Endemic areas: use pathogen reduction or outsourcing
• Sperm donation:
 – wait 6 months before donation
• OPTN/UNOS: www.optn.transplant.hrsa.gov
 – Zika should not exclude donors
 – Exercise caution in pregnant recipients
Conclusions

1. Mosquito-borne Zika virus has been spreading through Latin America and the Caribbean causing microcephaly and GBS, and imported cases and rare sexual transmission have been reported in the continental US.

2. Public and provider education, mosquito vector control, and prevention of sexual and blood-borne transmission are important public health responses to Zika virus.

3. Zika laboratory testing is rapidly evolving. More data are needed to guide clinicians in interpreting results and providing prognoses.

4. While the risk of local transmission is still low in California, the potential exists for a local outbreak to occur and enhanced surveillance of human cases and Aedes mosquitoes are important to protect the public health in California.