# Antimicrobial Stewardship: Doing our part to help solve the problems in healthcare

James A. McKinnell, M. D.

Consulting Specialist, M.D.

Los Angeles County Department of Public Health

### Disclosures

- I have received Government Research Funding from NIH, AHRQ, CDC, and CTSI
- I have served as a consultant for Achaogen, Allergan, Cempra, Science 37, Theravance, and ThermoFisher
- I lead antimicrobial stewardship initiatives in Skilled Nursing Facilities, Expert Stewardship, INC.
- I have no commercial/financial relationships related to decolonization, CHG, mupirocin, or iodophor products

### **Objectives**

• Define Two Major Contributors to HAI Deaths

• Explain how Antibiotic Duration and Antibiotic Choice Affect *Clostridium difficile* infection

 Explain one benefit of Antibiotic Stewardship on Patient Quality

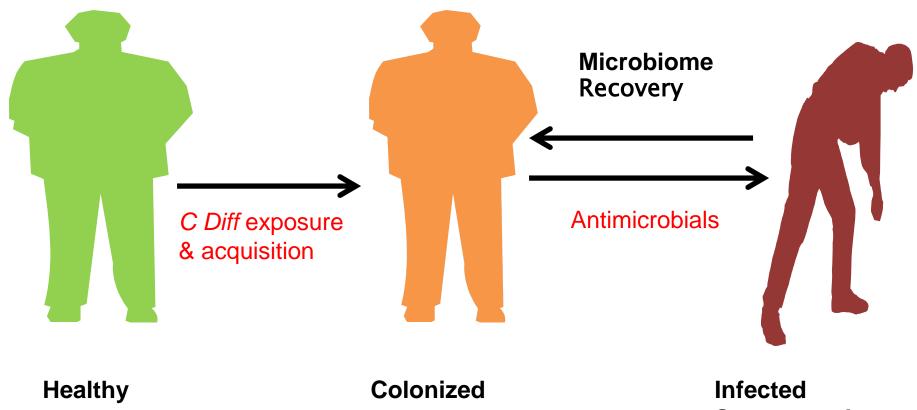
## **US Causes of Death**

|   | 2013                             | Deaths  |
|---|----------------------------------|---------|
| 1 | Heart Disease                    | 611,000 |
| 2 | Cancer                           | 584,000 |
| 3 | Accidents                        | 130,000 |
| 4 | Stroke                           | 129,000 |
| 5 | Healthcare Associated Infections | 100,000 |
| 6 | Alzheimer's Disease              | 83,000  |

http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm Accessed 4/22/2015, rounded to the nearest thousand deaths.

http://www.cdc.gov/HAI/pdfs/hai/infections\_deaths.pdf Accessed 4/22/2015.

# **Major Contributors to HAI Deaths**


• Unacceptable CDI rates

• Alarming Rates of Antibiotic Resistance

## **CDI: Impact**

|                                                                              | Number of<br>annual<br>cases | Cost     | Number of annual deaths |
|------------------------------------------------------------------------------|------------------------------|----------|-------------------------|
| Hospital-onset, hospital acquired (HO-HA)                                    | 165,000                      | \$ 1.3 B | 9000                    |
| Community-onset hospital<br>acquired (CO-HA)<br>[4 weeks of hospitalization] | 50,000                       | \$ 0.3 B | 3000                    |
| Nursing home-onset                                                           | 263,000                      | \$ 2.2 B | 16,500                  |

### **CDI Pathogenesis**



no symptoms

no symptoms

**Symptomatic** 

# Antimicrobials Predisposing to CDI

| Very commonly related                                                          | Less commonly related                                   | Uncommonly related                                            |
|--------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Clindamycin<br>Ampicillin<br>Amoxicillin<br>Cephalosporins<br>Fluoroquinolones | Sulfa<br>Macrolides<br>Carbapenems<br>Other penicillins | Aminoglycosides<br>Rifampin<br>Tetracycline<br>Chloramphincol |

Among symptomatic patients with CDI:

- 96% received antimicrobials within the 14 days before onset
- •100% received an antimicrobial within the previous 3 months
- > 20% of hospitalized patients are colonized with C. diff

# **Antibiotics and CDI**

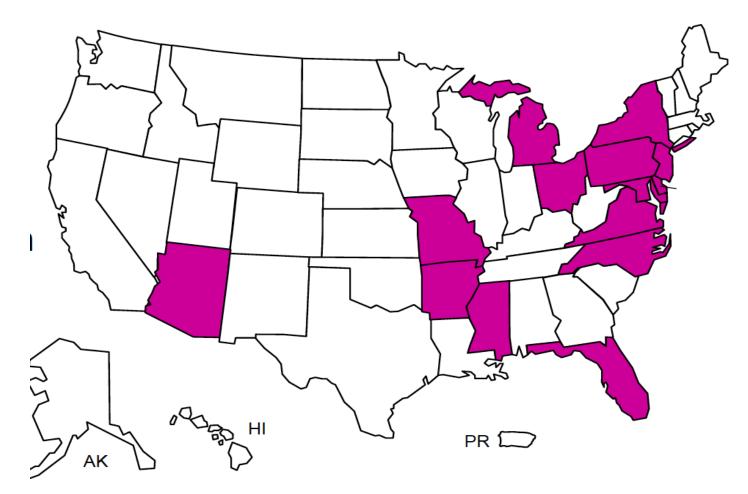
**Risk of CDI compared to resident on 1 antibiotic** 



|                     | Number of ATBs   |                     |
|---------------------|------------------|---------------------|
| 2 ATBs              | 3-4 ATBs         | 5+ ATBs             |
| 2.5 times<br>higher | 3.3 times higher | 9.6 times<br>higher |

Risk of CDI compared to resident on ATBs for <4 days




|                     | Days of Antibiotic |                        |
|---------------------|--------------------|------------------------|
| 4-7 days            | 8-18 days          | >18<br>days            |
| 1.4 times<br>higher | 3 times<br>higher  | 7.8<br>times<br>higher |

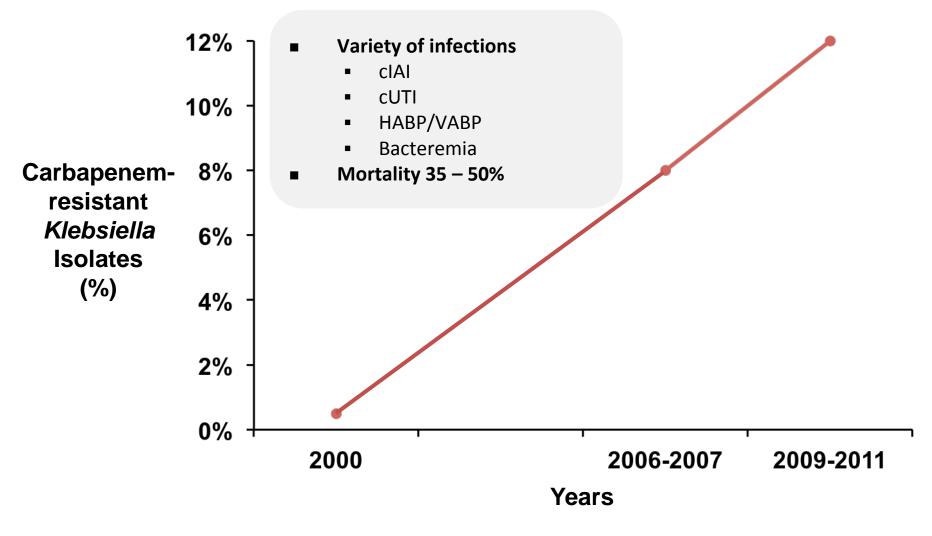
15. Epson, E. Orange County CDI Prevention Collaborative: Antimicrobial Stewardship. CDPH. November 5, 2015. Permission granted for use of this slide by Dr. Erin Epson. Original slide reference: Stevens, et al. Clin Infect Dis. 2011;53(1):42-48



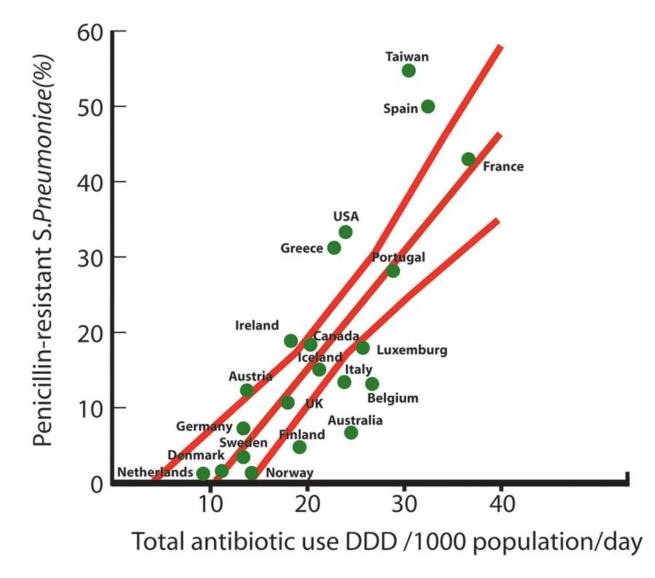
- CDC Report, Antibiotic Resistance Threats in the US 2013
- One of only three pathogens with an URGENT Threat Level

### **Cases of CRE in 2006**




http://www.cdph.ca.gov/programs/hai/Documents/CREpresentationForLocalPublicHealth073114.pdf Accessed 4/22/2015.

### February 2015




http://www.cdc.gov/hai/organisms/cre/TrackingCRE.html Accessed 4/22/2015.

### Steady Increase in CRE Incidence -US Hospital Reports to CDC



#### "The more we use them, the more we lose them..."

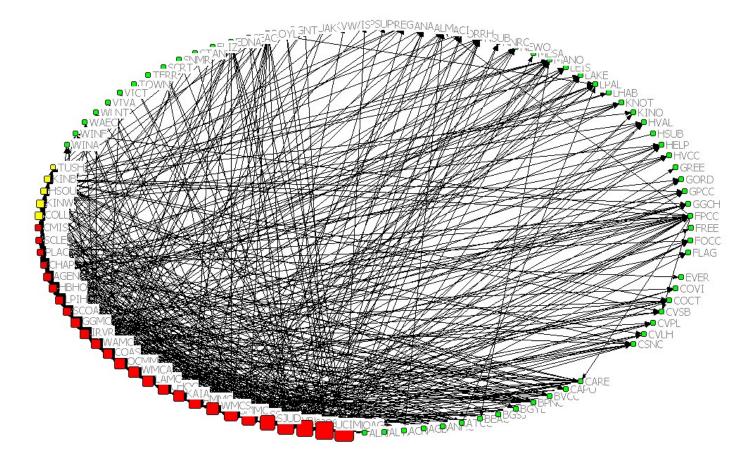


By courtesy of Dr. Liselotte Diaz Högberg

### "How are CRE and Other MDROs spreading so effectively?"

### **The Pig Pen Principle**

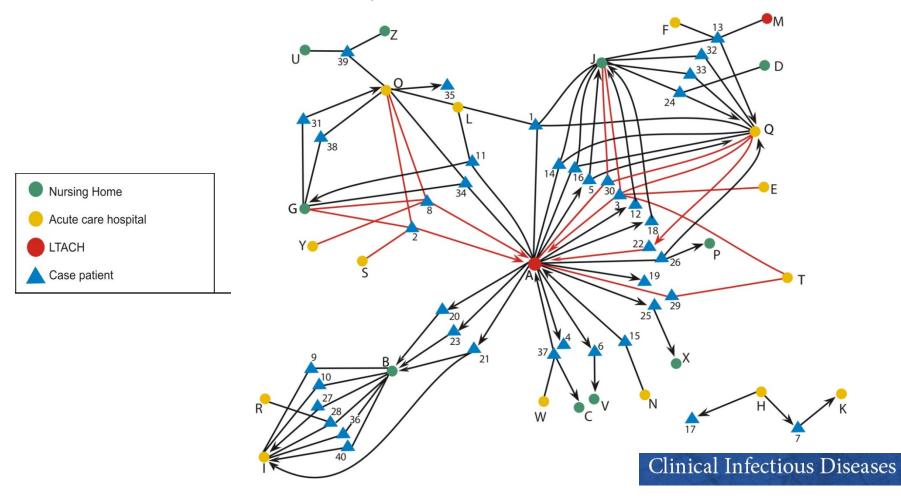
### **The Pig Pen Principle**



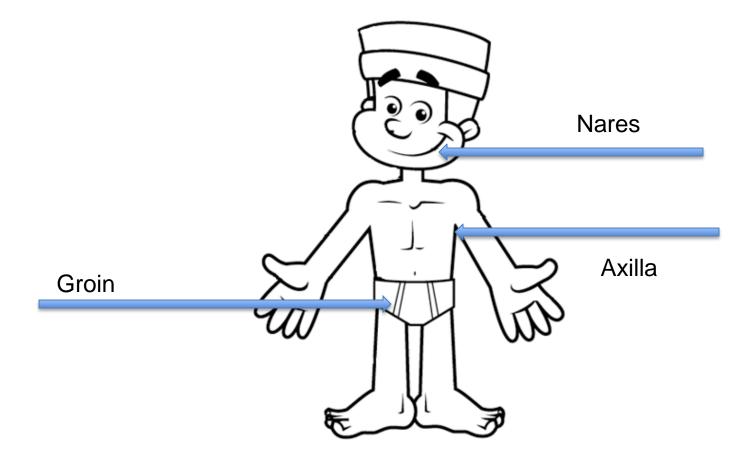

### Orange County, California Ideal Virtual Laboratory

- Relatively enclosed
  - Ocean to West
  - Forest to East
  - Undeveloped land to South
  - Traffic to North




### Sharing Patients – 10 Patients




Lee BY et al. Plos ONE. 2011;6(12):e29342

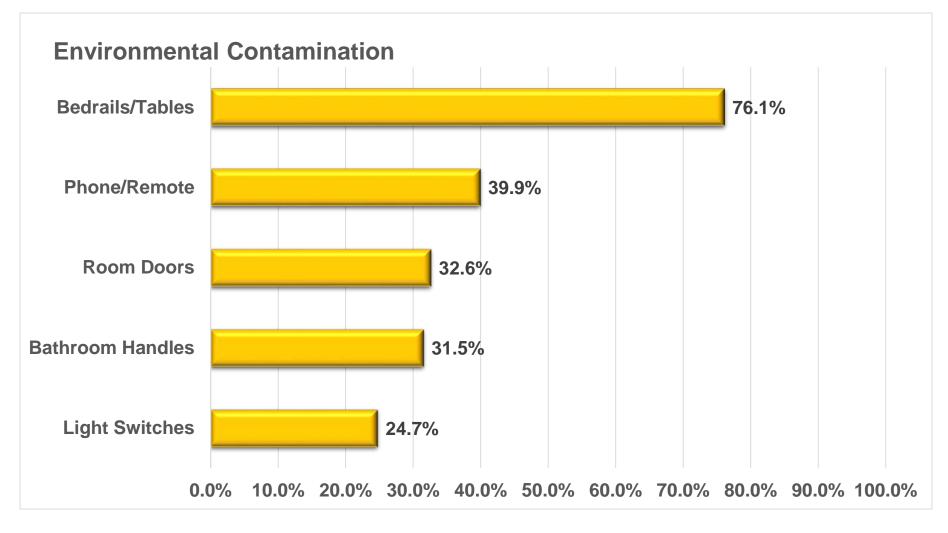
# Emergence and Rapid Regional Spread of *Klebsiella pneumoniae* Carbapenemase– Producing *Enterobacteriaceae*

Sarah Y. Won,<sup>1,2</sup> L. Silvia Munoz-Price,<sup>3</sup> Karen Lolans,<sup>4</sup> Bala Hota,<sup>4,5</sup> Robert A. Weinstein,<sup>4,5</sup> and Mary K. Hayden<sup>4</sup> for the Centers for Disease Control and Prevention Epicenter Program



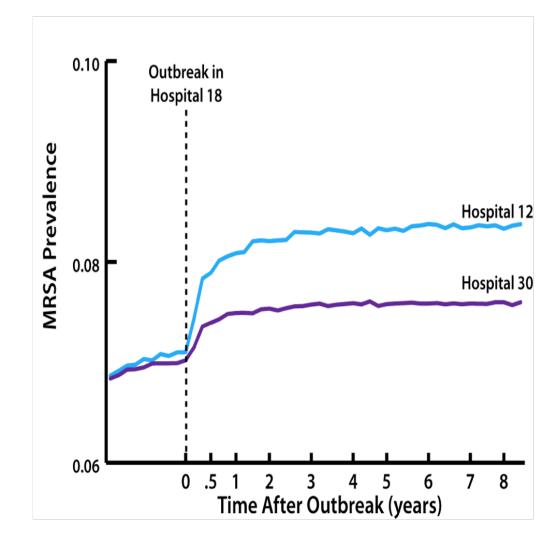
### **SNF Surveillance Sites for MDRO**




### **Pilot Project**

- Methicillin Resistant Staphylococcus aureus (MRSA)
- Vancomycin Resistant Enterococcus (VRE)
- Extended Spectrum Beta Lactamase Producers (ESBLs)
- Carbapenem Resistant Enterobacteriaceae (CRE)

#### 45% of nursing home residents harbor an MDRO\*


Data from over 40 nursing homes suggest these observations are generalizable McKinnell et al, Protect Pilot, SHEA Spring 2016

### **SNF Patient with Known Colonization**



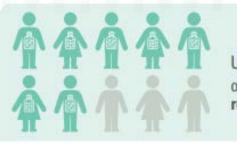
Bolaris et al, Protect Pilot, SHEA 2016 Spring Meeting.

### **Sustained Single Hospital Outbreak**



### **Regulatory Pressure**

California State


• Centers for Medicare and Medicaid Services



**Antibiotic Stewardship in Nursing Homes** 

#### 4.1 MILLION Americans are admitted to or

reside in nursing homes during a year<sup>1</sup>



UP TO **70%** of nursing home residents received antibiotics during a year" LTC Antibiotic cost estimates:

\$38-\$137 million per year in US

UP TO **75%** of antibiotics are

prescribed incorrectly\*23

\*incorrectly = prescribing the wrong drug, dose, duration or reason
<sup>3</sup> AHCA Quality Report 2013.
<sup>3</sup> Lim CJ, Kong DCM, Stuart RL. Reducing inappropriate antibiotic prescribing in the residential care setting: current perspectives. Clin Interven Aging. 2014; 9: 165-177.
<sup>3</sup> Nicolle LE, Bentley D, Garibaldi R, et al. Antimicrobial use in long-term care facilities. Infect

<sup>3</sup>Nicolle LE, Bentley D, Garibaldi R, et al. Antimicrobial use in long-term care facilities. Infect Control Hosp Epidemiol 2000; 21:537–45.



Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases CDC. Get smart for healthcare: Antibiotic use in nursing homes. http://www.cdc.gov/getsmart/ healthcare/learn-fromothers/factsheets/nursinghomes.html. Last accessed 8/15/2016.

# **Regulatory Requirements**

 "By the end of 2017, CMS and CA require long-term care and nursing home facilities to develop and implement robust ASPs that adhere to best practices"





CALIFORN



### "National Action Plan for Combating Antibiotic Resistance"

#### March 2015

# Basic ASP Tier Elements for SNFs: Less Challenging Components

- 1. Antimicrobial stewardship (AS) policy/procedure
- 2. Written statement in support of ASP with evidence for necessary budget/staffing
- 3. AS activities reported to facility's Quality Assurance-Performance Improvement (QAPI) program.
- 4. Establish physician-supervised, multidisciplinary antimicrobial stewardship committee

#### **DEADLINE: January 1, 2017**

# Basic ASP Tier Elements for SNF: More Challenging Components

- 5. Program support from a physician or pharmacist with specific training on antimicrobial stewardship
- 6. AS education provided to nursing staff, medical staff, residents, and visitors

### DEADLINE: January 1, 2017



### New COP Requirements

# **Steps to Stewardship**

- 1) Get Leadership Support
- 2) Form a Multi-Disciplinary Team with Expertise
- 3) Define the Stewardship Opportunities for Improvement(Tracking)
- 4) Develop an Action Plan and Educate(Action and Educate)
- 5) Report on Results (Reporting)
- Repeat Steps 3-5

## CMS COP

 We would require that the Governing Body ensure that systems are in place and operational for infection surveillance, prevention, and control, and antibiotic use activities, in order to demonstrate the implementation, success, and sustainability of such activities

# CMS COP – ASP Leader

- 1) Development and Implementation of hospital-wide antibiotic stewardship program
- 2) All Documentation, written or electronic, of antibiotic stewardship program activities
- 3) Communication and collaboration with medical staff, nursing, and pharmacy leadership
- 4) Communication and collaboration with hospital IP and QAPI
- 5) Competency-based training and education of hospital personnel and staff, including medical staff, and contracted services in the hospital

# **Key Components For Success**

- Regulatory Compliance
- Analysis of Antibiotic Utilization
- Education
  - -MD
  - Nursing Staff
  - Residents and Families
- Improved Quality and Care for Patient

### "One Third of What You Learned in Medical School is Wrong...

The Trick is Determining Which Third."

# **Dr. Mc Kinnells' Duration Notes**

**Disease State** 

- Community Associated Pneumonia
- HAP/VAP
- Pyelonephritis
- Cellulitis
- Bacteremia

**Duration** (days)

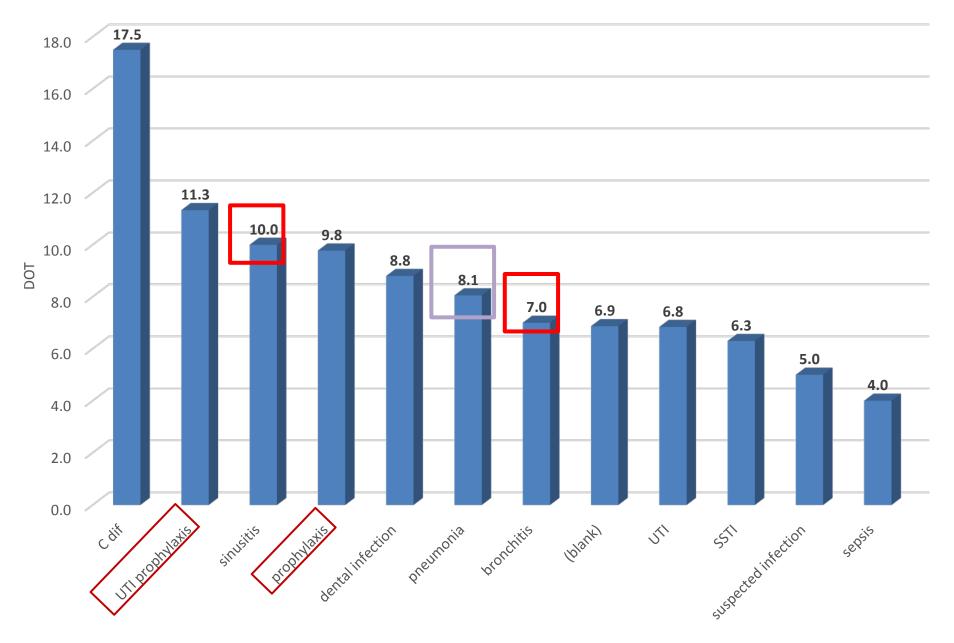
7-10
10-14
10-14
7-10
14-42

# HCAP/VAP 7 DAYS

- Several RCTs 7-8 days equal to 10-15 days
- Reduced emergence of resistance
- MRSA and *Pseudomonas* infections may require longer therapy

Capellier et al. PLoS One 2012:7:e41290; Chastre et al. JAMA 2003 290:2588-98; Kalil et al. CID 2016 63:e61-e111

## PYELONEPHRITIS 5-7 DAYS


- Several RCTs 5-7 days equal to 10-14 days
- Short course effective despite diabetes and GNB bacteremia

Jernelius et al. Acta Med Scand 1988;223:469-77; de Gier R, Karperien A, Bouter K, et al. 1995. Int J Antimicrob Agents 6:27-30; Talan DA, Stamm WE, Hooton TM, et al. 2000 JAMA 283:1583-90; Sandberg et al. 2012 Lancet 380:484-90; Peterson et al. 2008 Urology 71:17-22; Klausner et al. 2007. Current medical research and opinion 23:2637-45.

## No Benefit, More Resistance!!!

| Diagnosis  | Short (d)     | Long (d)      | Result |
|------------|---------------|---------------|--------|
| САР        | 3 or 5        | 7, 8, or 10   | Equal  |
| НАР        | 7             | 10-15         | Equal  |
| VAP        | 8             | 15            | Equal  |
| Pyelo      | 7 or 5        | 14 or 10      | Equal  |
| Intra-abd  | 4             | 10            | Equal  |
| AECB       | <u>&lt;</u> 5 | <u>&gt;</u> 7 | Equal  |
| Cellulitis | 5-6           | 10            | Equal  |
| Osteo      | 42            | 84            | Equal  |

Average Days of Therapy by Indication



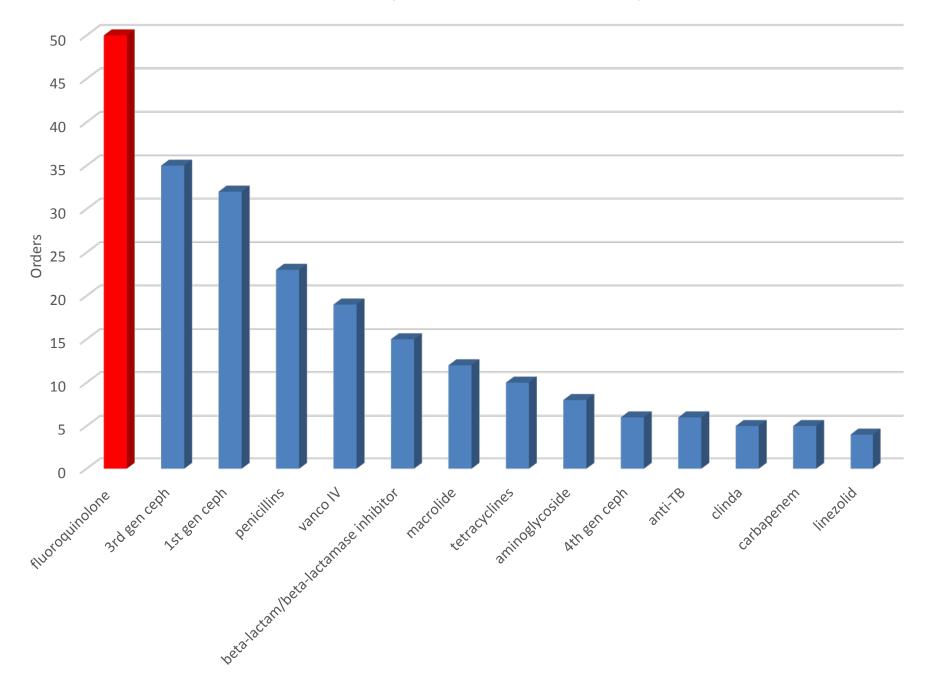
## **Antimicrobials Predisposing to CDI**

| Very commonly related                                                          | Less commonly related                                   | Uncommonly related                                            |
|--------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Clindamycin<br>Ampicillin<br>Amoxicillin<br>Cephalosporins<br>Fluoroquinolones | Sulfa<br>Macrolides<br>Carbapenems<br>Other penicillins | Aminoglycosides<br>Rifampin<br>Tetracycline<br>Chloramphincol |

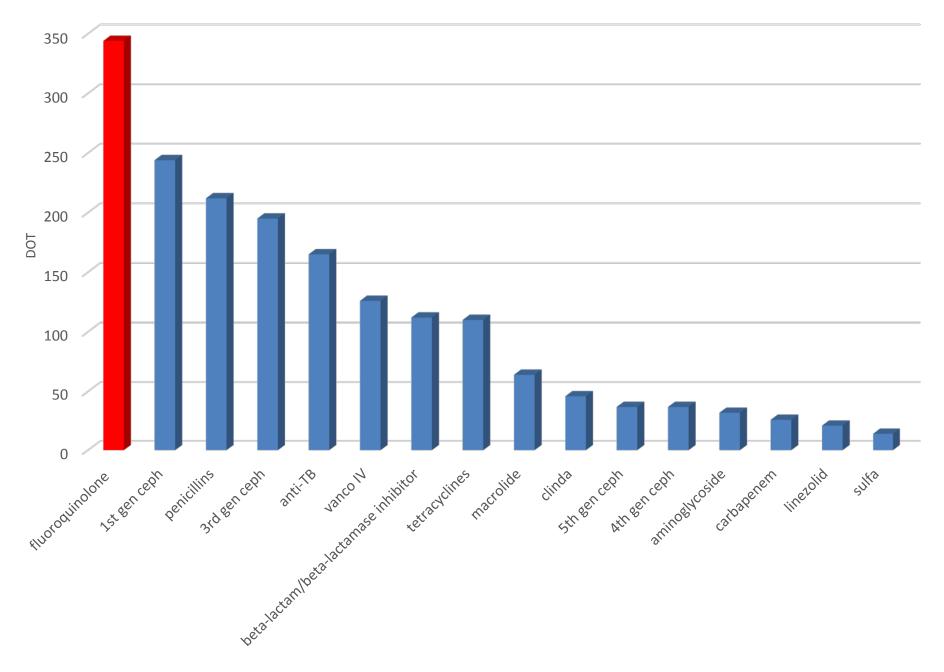
> Among symptomatic patients with CDI:

- 96% received antimicrobials within the 14 days before onset
- •100% received an antimicrobial within the previous 3 months
- > 20% of hospitalized patients are colonized with C. diff

### 2016 Antibiogram


|                    |               |               |           |           | +       | +       |               |                  |            |              |
|--------------------|---------------|---------------|-----------|-----------|---------|---------|---------------|------------------|------------|--------------|
|                    | Ent. faecalis | Ent. faecalis | Kleb pneu | Kleb pneu | E. coli | E. coli | Staph. aureus | Pseu. aeruginosa | Prot. Mir. | Mor morganii |
| # OF SPECIMENS     | 4             | 2             | 9         | 1         | 31      | 12      | 5             | 5                | 18         | 1            |
| ESBL,MRSA,VRE,MDRO |               | VRE+          |           | ESBL      |         | ESBL+   | MRSA+         |                  |            |              |
| AMIKACIN           |               |               | 100       | 100       | 100     | 100     |               | 100              | 100        | 100          |
| AMPICILLIN         | 100           | 50            | 0         | 0         | 32      | 0       |               | 0                | 50         | 0            |
| CEFTAZIDINE        |               |               | 100       | 0         | 94      | 0       |               | 40               | 83         | 0            |
| CEFTRIAXONE        |               |               | 100       | 0         | 97      | 0       |               | 0                | 83         | 0            |
| CIPROFLOXACIN      | 50            | 0             | 67        | 100       | 35      | 8       | 0             | 0                | 17         | 0            |
| GENTAMICIN         |               |               | 89        | 100       | 81      | 75      | 60            | 20               | 50         | 0            |
| IMPINEM            |               |               | 100       | 100       | 100     | 92      |               | 100              |            |              |
| LEVOFLOXACIN       | 50            | 0             | 78        | 100       | 35      | 8       | 0             | 0                | 44         | 0            |
| NITROFURANTOIN     | 100           | 100           | 56        | 0         | 90      | 83      | 100           | 0                | 6          | 0            |
| PIP/TAZO           |               |               | 100       | 100       | 97      | 92      |               | 80               | 83         | 100          |
| TRIMETH/SULFA      |               |               | 78        | 100       | 48      | 25      | 80            | 0                | 44         | 0            |
| CEFAZOLIN          |               |               | 78        | 0         | 77      | 0       |               | 0                | 67         | 0            |
| CEFTOXITIN         |               |               | 78        | 100       | 81      | 33      |               | 0                | 67         | 0            |
| CEFEPIME           |               |               | 100       | 0         | 94      | 0       |               | 80               | 78         | 100          |
| ERTAPENEM          |               |               | 100       | 100       | 100     | 100     |               |                  | 100        | 100          |
| TIGECYCLINE        | 75            | 100           | 78        | 100       | 100     | 100     | 100           | 0                | 11         | 0            |
| CLINDAMYCIN        |               |               |           |           |         |         | 60            |                  |            |              |
|                    |               |               |           | -         | -       | -       |               |                  |            |              |

### **FDA Black Box Warning**


The FDA first added a Boxed Warning to fluoroquinolones in July 2008 for the increased risk of tendinitis and tendon rupture. In February 2011, the risk of worsening symptoms for those with myasthenia gravis was added to the Boxed Warning. In August 2013, the agency required updates to the labels to describe the potential for irreversible peripheral neuropathy (serious nerve damage).

In November 2015, an FDA Advisory Committee discussed the risks and benefits of fluoroquinolones for the treatment of acute bacterial sinusitis, acute bacterial exacerbation of chronic bronchitis and uncomplicated urinary tract infections based on new safety information. The new information focused on two or more side effects occurring at the same time and causing the potential for irreversible impairment. The advisory committee concluded that the serious risks associated with the use of fluoroquinolones for these types of uncomplicated infections generally outweighed the benefits for patients with other treatment options.

Today's action also follows a May 12, 2016, drug safety communication advising that fluoroquinolones should be reserved for these conditions only when there are no other options available due to potentially permanent, disabling side effects occurring together. The drug safety communication also announced the required labeling updates to reflect this new safety information. Number of Unique Antibiotic Orders by Class



### Cumulative Days of Therapy (DOT) by Antibiotic Class



### Prescribing Patterns of the Highest Antibiotic Prescribers

| Prescriber | Antibiotic Orders | Ave DOT | FQ Orders | non-FQ | FQ ave |
|------------|-------------------|---------|-----------|--------|--------|
|            | (n)               |         |           | Orders | DOT    |
| Doctor     | 48                | 7.6     | 12.5%     | 87.5%  | 6.7    |
| Doctor     | 21                | 7       | 33.3%     | 66.7%  | 6.6    |
| Doctor     | 21                | 6.3     | 9.5%      | 90.5%  | 8.5    |
| Doctor     | 20                | 6.2     | 40.0%     | 60.0%  | 7.3    |
| Doctor     | 20                | 6.3     | 35.0%     | 65.0%  | 4.6    |
| Doctor     | 15                | 8.4     | 20.0%     | 80.0%  | 10.3   |

#### **Duration of Antibiotic**

Antibiotic use drives antibiotic resistance and Clostridium difficile:

- Antibiotics that last more than 7 days increased risk of CDI more than 3-fold<sup>1</sup>.
- Three or more antibiotics increased risk of CDI more than 3-fold<sup>1</sup>.
- Fluoroquinolones increased risk . of CDI by 4-fold<sup>1</sup>.

| Pneumonia       | 5-7 Days   |
|-----------------|------------|
| Cellulitis      | 5 Days     |
| Simple Cystitis | 3-5 Days   |
| Pyelonephritis  | 7 Days     |
| Foley UTI       | 5-10 Days  |
| C. diff         | 14 Days    |
| Bacteremia      | ID Consult |

These duration recommendations are guidelines only and do not replace clinical evaluation, judgement, and monitoring.

<sup>1</sup> Stevens et al. CID. 2011. Cumulative Antibiotics and Risk of CDI

IV to PO Switches

Patients who can tolerate an oral diet should be switched to oral antibiotic therapy when clinically indicated. Possible IV to Oral Antibiotic switches:

#### Vancomycin IV → Bactrim or **Doxycycline PO**

Bactrim and Doxycycline still retain near 100% sensitivity against MRSA and MSSA. Clindamycin is not recommended.

#### Fluoroguinolone IV → Fluoroquinolone PO Excellent oral bio-availability and therapeutic equivalency; Fluoroquinolones should never be used as first-line agents if possible.

Ceftriaxone [UTI] → Keflex Cephalosporins retain excellent activity on our antibiogram.

Ceftriaxone [PNEUMONIA] → Azithromycin +/- Augmentin As per the pneumonia recommendation.

#### IV to IV Switches

Brand Name to Generic Unasyn IV → Ampicillin/sulbactam IV Generic to Generic Oxacillin IV  $\rightarrow$  Cefazolin IV



320 SUPERIOR AVENUE | SUITE 290 NEWPORT BEACH, CA | 92633 PHONE | (800) 480-3910

#### **Blue Book**

"The purpose of the antimicrobial stewardship program is to provide guidance on the appropriate selection, dosing, route, and duration of antimicrobial usage."

-Infectious Disease Society of America (IDSA)

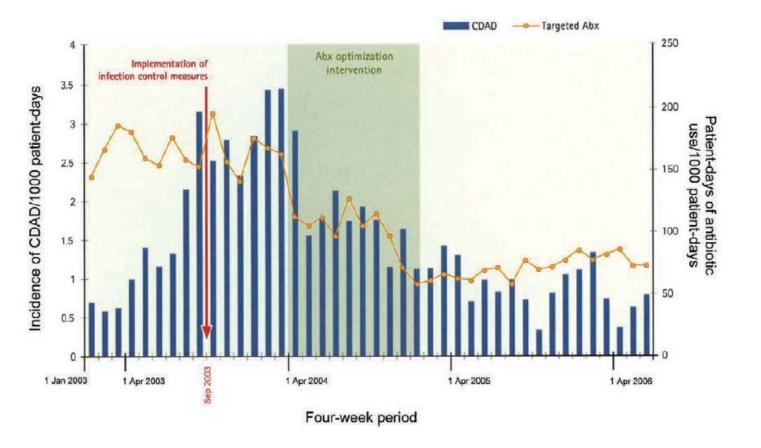
These Antimicrobial Stewardship Guidelines do NOT replace good clinical judgment.

Based upon 2016 Antibiogram **Results and Clinical Practice** Patterns in 2016

### **Antibiotic Stewardship**

• Improved Quality and Care for Patient



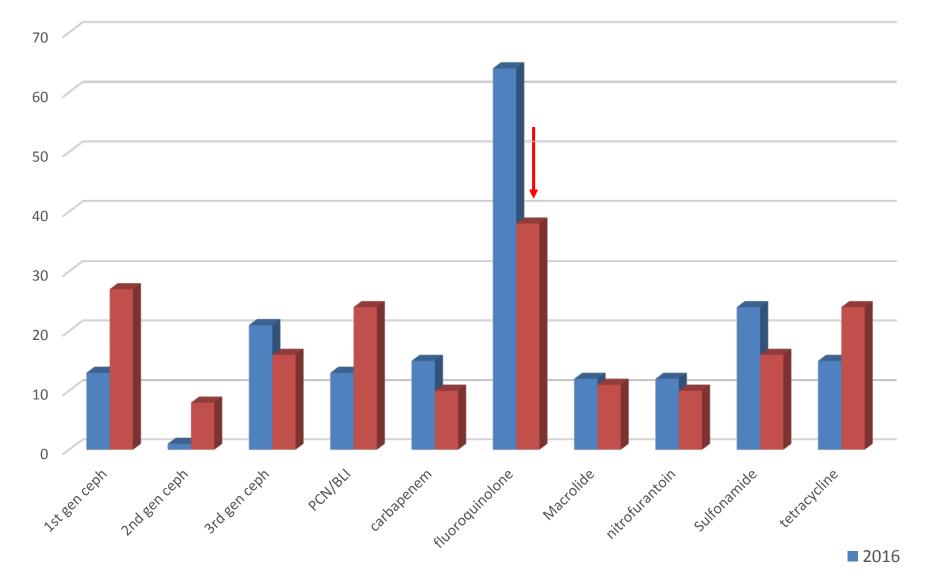

### Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam,<sup>1</sup> Sara E. Cosgrove,<sup>2</sup> Lilian M. Abbo,<sup>3</sup> Conan MacDougall,<sup>4</sup> Audrey N. Schuetz,<sup>5</sup> Edward J. Septimus,<sup>6</sup> Arjun Srinivasan,<sup>7</sup> Timothy H. Dellit,<sup>8</sup> Yngve T. Falck-Ytter,<sup>9</sup> Neil O. Fishman,<sup>10</sup> Cindy W. Hamilton,<sup>11</sup> Timothy C. Jenkins,<sup>12</sup> Pamela A. Lipsett,<sup>13</sup> Preeti N. Malani,<sup>14</sup> Larissa S. May,<sup>15</sup> Gregory J. Moran,<sup>16</sup> Melinda M. Neuhauser,<sup>17</sup> Jason G. Newland,<sup>18</sup> Christopher A. Ohl,<sup>19</sup> Matthew H. Samore,<sup>20</sup> Susan K. Seo,<sup>21</sup> and Kavita K. Trivedi<sup>22</sup>

### Strategies with **strong recommendations** include:

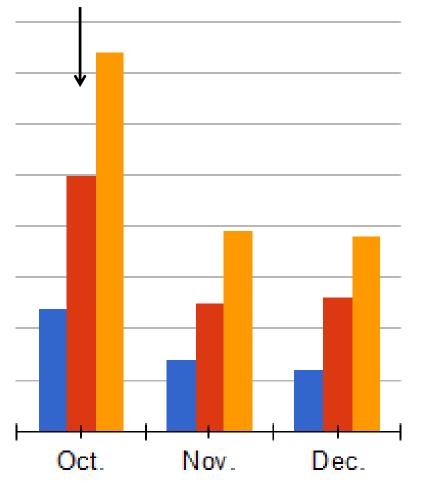
- Preauthorization and/or prospective audit with feedback
- Limit therapy to shortest effective duration
- Reduce use of antibiotics associated with a high risk of CDI
- Pharmacy-based interventions Pharmacokinetic monitoring; IV to PO conversion

### Formulary Restriction and/or Prospective Audit with Feedback Targeting High-Risk Antibiotics Can Reduce CDI Incidence




Valiquette, et al. Clin Infect Dis. 2007;45:S112-21

### Antimicrobial Stewardship Across Transitions of Care

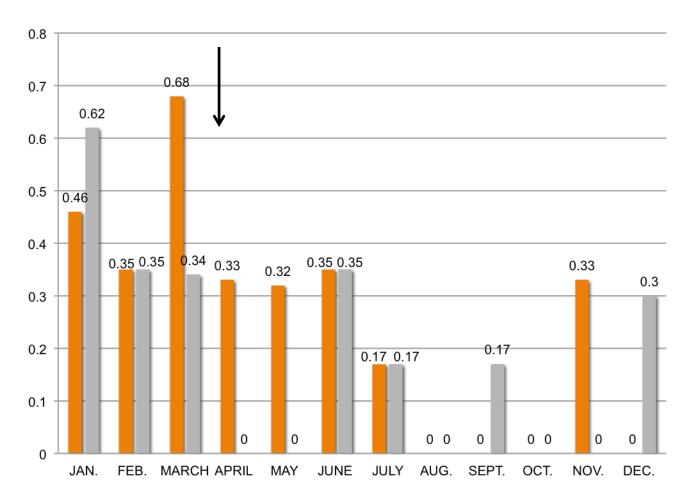

- Ensure communication of antibiotic indication and anticipated duration when patients/residents transfer between facilities
- Ensure communication and documentation of patient/resident symptoms upon transfer
  - Ensure appropriate diagnostic testing and infection control measures implemented promptly
  - Avoid unnecessary or inappropriate diagnostic testing
- Establish consistency of practice and messaging about antimicrobial use across diverse care settings

#### Number of Orders by Class Feb-Apr 2016 vs Feb-Apr 2017



Total number antibiotic orders did not change in Feb-Apr 2016 vs Feb-Apr 2017, 151 and 155 orders, respectively. However there was an overall drop in FQ orders in 2017 period.

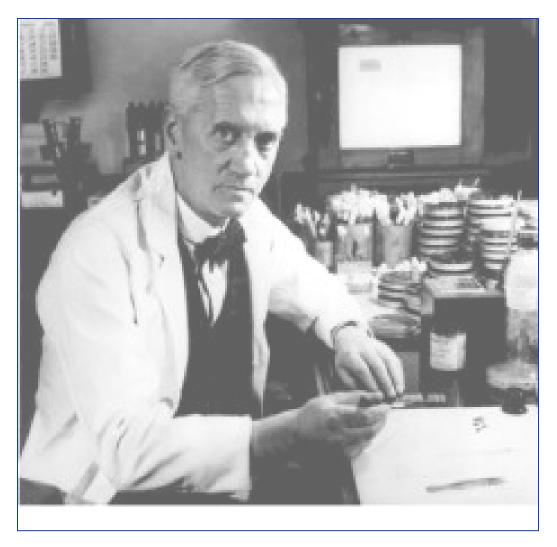
### **Guideline and Education Interventions**




Guidelines and Education are facility specific and should not be applied to your facility

Quinolones
 Ceftriaxone
 Total

### C-DIFF RATES 2016


CAI'S RATES HAI'S RATES



## Value of Antibiotics

| Disease                                 | Pre-Antibiotic<br>Death Rate | Death With<br>Antibiotics | Change in<br>Death |
|-----------------------------------------|------------------------------|---------------------------|--------------------|
| Community Pneumonia <sup>1</sup>        | ~35%                         | ~10%                      | -25%               |
| Hospital Pneumonia <sup>2</sup>         | ~60%                         | ~30%                      | -30%               |
| Heart Infection <sup>3</sup>            | ~100%                        | ~25%                      | -75%               |
| Brain Infection <sup>4</sup>            | -60%                         |                           |                    |
| Skin Infection <sup>5</sup>             | -10%                         |                           |                    |
| By comparisontreatme<br>with aspirin or | -3%                          |                           |                    |

<sup>1</sup>IDSA Position Paper '08 Clin Infect Dis 47(S3):S249-65; <sup>2</sup>IDSA/ACCP/ATS/SCCM Position Paper '10 Clin Infect Dis 51(S1):S150-70; <sup>3</sup>Kerr AJ. <u>Subacute Bacterial Endocarditis</u>. Springfield IL: Charles C. Thomas, 1955 & Lancet 1935 226:383-4; <sup>4</sup>Lancet '38 231:733-4 & Waring et al. '48 Am J Med 5:402-18; <sup>5</sup>Spellberg et al. '09 Clin Infect Dis 49:383-91 & Madsen '73 Infection 1:<u>76</u>-81; <sup>6</sup>'88 Lancet 2:349-60 .... microbes are educated to resist penicillin ... In such cases the thoughtless person playing with penicillin is morally responsible for the death of the man who finally succumbs to infection with the penicillinresistant organism. I hope this evil can be averted.



- Sir Alexander Fleming, NY Times June 1945

### Thank you for your attention...