Ask an IP Learning and Communication Series

Week 5 – Microbiology Wednesday, April 6, 2022

Acute Communicable Disease Control Program Los Angeles County Department of Public Health

Disclosures

There is no commercial support for today's call

Neither the speakers nor planners for today's call have disclosed any financial interests related to the content of the meeting

This call is meant for healthcare facilities and is off the record and reporters should log off now

Housekeeping

- How to Mute/Unmute (Crtl+ Shift+ M):
 - Press the Mute button on your phone if dialing in
- How to Raise Hand:
- How to use Chat:

Reminder

The purpose of this Learning and Communication Series is to **review core infection prevention practices** (beyond COVID-19) that must be used in all care settings, and to **foster discussion** among LA County Skilled Nursing Facilities about infection control practices.

We would like to remind everyone that the LAC DPH SNF COVID-19 Guidance has been updated as of 03/31/2022. Please take time to review this updated information. We will not be reviewing COVID-19 guidelines (including CDPH AFLs) during these sessions.

Link to Guidelines:

http://publichealth.lacounty.gov/acd/ncorona2019/healthfacilities/snf/prevention/

Infection Prevention Team

Jehan Mephors, RN, BSN

Walteena Brooks, LVN

Rachel Gibbs, RN, BSN

Marco Marquez, MPH, CIC

Krystal Smith, MSc, CIC

Praveena Mallam, PA

Contact Us: LACSNF@ph.lacounty.gov

Slides & recordings:

http://publichealth.lacounty.gov/acd/infectionpreventionseries.

Objectives

- Describe the **role of the laboratory** in Infection Prevention
- Describe essential laboratory tests for the identification of infectious pathogens
- Examine **common HAI** pathogens
- Foster discussion among LA County Skilled Nursing Facilities about infection control practices

Microbiology and Infection Prevention

Microbiology has two vital functions associated with infection prevention and control

Clinical: Identification of pathogens and their susceptible treatment

Epidemiological: Identification of pathogens causing disease or outbreak in a population of people and potential sources of the pathogen

Laboratory Result Accuracy

- There is no such thing as a lab test that is 100% accurate 100% of the time
- Factors affecting accuracy of lab tests:

Pre-testing: specimen collection, handling, transportation, preservation prior to lab arrival

During testing: specimen processing, lab technician skill and behaviors, biochemical accuracy, instrument system

Post-testing: transcription accuracy, communication of results accuracy

Interpreting Microbiology Test Results

- The presence of an organism does not always mean that it is causing disease
 - Sterile sites- bacterial growth may confirm an infection
- All cultures should be interpreted in the context of what pathogens are typically found in that body site
- Sample contamination may result in inaccurate results & pseudo-outbreaks
- To interpret microbiological test results, use in conjunction with blood cell counts

1.chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.cdph.ca.gov%2FPrograms%2FCHCQ%2FHAI%2FCDPH%2520D ocument%2520Library%2F2019_11_Intro.Micro_Approved02.22.19.pdf

Complete Blood Count (CBC)

- Provides a quick snapshot of someone's overall health
 - Including absence or presence of infection
 - Measures blood components
 - White Blood Cells (WBC) included
 - If elevated, could indicate infection
 - A normal white blood cell count is in the range of 4,000 to 11,000 cells per liter of blood

Types of White Blood Cells (WBC)

- Polymorphonuclear leukocytes (PMN): generalized response to threat
 - Neutrophils make up 50-60% of WBC, 1st line response to infection; infection fighters that increase during bacterial infections - AKA "segs"
 - Eosinophils present with parasites and allergic reactions
 - Basophils present with allergic reaction, mediate strength of immune response

Types of White Blood Cells (WBC) (2)

- Lymphocytes mature in the lymphatic portion of the immune system
 - Include pathogen-specific immune response (B cells and T cells)
 - An increase in lymphocytes may be indicative of <u>viral</u> <u>infection</u>
- Monocytes (AKA macrophages) have phagocytic functions meaning they eat cellular debris and foreign pathogens in the immune system

Serology

- Diagnostic test that identifies immunoglobulins (AKA antibodies) in serum blood
- Immunoglobulins (Ig) proteins that bind to viruses and bacteria
 - Types:
 - IgM- produced immediately following exposure (acute phase of disease)
 - IgG- most abundant; long term response to disease (chronic disease)
 - IgA- secretory, present in mucosal linings
 - IgE- plays role in hypersensitivity reactions

Gram Stain

- Methodology used to classify bacteria into 2 groups:
 - Gram Positive
 - Gram Negative
- Differentiates bacteria by physical and chemical cell wall properties
- Helpful in guiding empiric therapy

Gram Stain

1.chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.cdph.ca.gov%2FPrograms%2FCHCQ%2FHAI%2FCDPH%2520D ocument%2520Library%2F2019_11_Intro.Micro_Approved02.22.19.pdf

Blood Cultures (cx)

- A blood culture specimen is collected in 2 bottles. Growth may occur in either or both bottles
 - 1 bottle for aerobe growth
 - 1 bottle for anaerobe growth
- In adult population, false negative results occur from low amount of bacteria presence in blood (≤ 30/mL)
- Collection of adequate blood volume is essential (40mL of blood for 4 bottles)
- Specimen collection technique is important because introduction of contaminants to specimen (common skin commensal flora)

Blood Culture (2)

Urinalysis (UA)

- Positive nitrite or leukocyte esterace can help determine presence of WBC
- WBC presence in urine with negative cultures indicative of gonorrhea or chlamydia

Common Urinary Tract Infection (UTI) Pathogens

- Gram Positive
 - Staph, Enterococcus, *Staphylococcus saprophyticus*
- Gram Negative
 - E. coli- cause of more than 80% of all UTI's
 - Proteus, Klebsiella, Enterobacter, Pseudomonas, Gardnerella

Common Pathogens for Surgical Site Infection (SSI)

- Aerobic (can survive and grow in oxygenated environment)
 - Staphylococcus
 - Streptococcus
 - Gram negative rods (GNR)
- Anaerobic (does not require oxygen for growth)
 - B. fragilis
 - Clostridium
 - Peptostreptococcus
 - Propionibacteriam

Common Bowel Flora

- Gut health is maintained by a normal mix of bacterial flora
- Altered conditions of the gut allow for C. difficile, yeast, pseudomonas species, Enterobacter, and other organisms to become dominant
- 400 species of organism can be located in the bowel

- 95-99% of those 400species are comprised of:
 - Enterobacter
 - Enterococcus
 - Proteus
 - Morganella
 - Peptostreptococcus
 - Bacteroids
 - Clostridium
 - Bifidobacterium

Antibiotic Resistance (AR)

- AR emerges when some or all of a species or subspecies of bacteria survive exposure to an antibiotic
 - Can be intrinsic or transferred
 - Multi-drug resistance organisms (MDRO) are resistant to multiple antibiotic agents
- An antibiogram shows the proportion of bacteria resistant to specific antibiotics in a hospital or region
 - Used for clinical decision-making

 $1. https://www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH\%20Document\%20Library/2019_11_Intro.Micro_Approved02.22.19.pdf$

Antibiogram

- Definition: Summary of antimicrobial susceptibility for selected bacterial pathogens, provide comprehensive information about local antimicrobial resistance. They are usually generated by a laboratory using aggregate data from a hospital or healthcare system.
 - Help guide the clinician and pharmacist in selecting the best empiric antimicrobial treatment
 - Detect and monitor trends in antimicrobial resistance

Antibiogram (2)

Gram-Negative Organism Antibiogram

		Penicillins			Cephalosporins				Carbapenems			Aminoglycosides			Quinolones		Other			
Data presented as: Percent Susceptible (# of Isolates Tested)	# of all isolates tested (# of hospitals reporting)	Ampicillin	Ampicillin/ Sulbactam	Piperacillin/ Tazobactam	Ceftriaxone	Ceftazidime	Cefepime	Cefazolin	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Levofloxacin	Trimethoprim/ Sulfamethoxazole	Nitrofurantoin	Minocycline	Tigecycline
Acinetobacter baumannii	2,723 75	R	43 2,084	27 1,776	10 1,320	27 1,894	40 1,139	R	R	27 1,120	39 1,436	36 1,925	37 2,661	40 2,084	27 2,030	26 1,985	48 2,287		79 154	79 424
Citrobacter freundii	1,720 45	R	R	83 1,604	79 1,629	80 1,370	98 1,579	R	100 1,100	98 361	98 1,329	99 1,517	92 1,720	92 916	91 1,490	90 801	82 1,683	95 1,443	-	100 254
Citrobacter koseri	561 19	R	90 85	99 549	96 527	97 383	99 483	93 498	100 248	99 161	100 364	99 450	99 561	97 427	99 372	98 450	96 550	86 542	-	100 61
Enterobacter sp.	8,911 71	R	R	81 8508	79 7918	81 6816	96 8044	R	95 5333	94 2138	99 6770	99.5 7207	97 8818	97 5022	96 7331	95 4605	92 8510	35 5735	-	99 1650
Escherichia coli	143,153 82	38 15,318	50 59,750	94 135,592	87 136,184	89 118,505	89 128,176	83 123,386	100 89,252	100 27,115	100 11,374	99 123,826	88 142,208	83 67,642	73 122,656	69,750	67 141,267	96 129,730	-	100 8,523
Klebsiella oxytoca	3,248 49	R	66 1,693	93 2,844	93 2,842	96 2,448	97 2,772	53 2,604	100 1,890	100 717	100 2,408	100 2,679	96 2,948	94 1,692	95 2,588	95 1,358	91 2,780	85 2,046	-	100 479
Klebsiella pneumoniae	30,629 80	R	71 13,763	87 24,936	85 25,145	86 20,712	87 23,744	81 21,631	96 15,606	90 6,529	97 19,382	95 24,501	90 25,802	84 15,356	86 21,942	84 13,646	83 24,970	35 20,500	-	93 1,948
Morganella morganii	2,300 53	R	10 1,362	96 2,223	85 2,037	78 1,747	96 2,077	R	100 1,300	55* 439	99 1,599	99 2,119	73 2,240	85 1,325	63 1,876	54 1,401	56 2,178	R	•	R
Proteus mirabilis	19,503 80	70 17,791	77 9,969	97 17,599	87 17,582	91 14,857	92 16,487	74 16,657	99 10,454	69* 2,583	97 13,057	99 15,833	83 18,733	82 11,239	67 15,154	62 11,572	68 18,603	R	-	R
Pseudomonas aeruginosa	23,921 83	R	R	85 23,524	R	81 20,258	85 21,045	R	R	80 12,142	84 17,770	96 22,185	85 23,575	93 21,464	73 19,554	65 16,206	R	R	-	R
Serratia marcescens	2,668 58	R	R	94 1,876	90 2,376	92 2,047	95 2,401	R	99 1,462	96	97 1,987	96 2,417	97 2,663	79 1,707	87 2,330	86 1,581	98 2,256	R	-	99.6 550
Stenotrophomonas maltophilia	1,970 51	R	R	R	R	46 1,082	•	R	R	R	R	R	R	R	-	81 1,511	92 1,996	-	98 42	R

Resistance - Extended Spectrum Beta-Lactamase (ESBL) Producing Gram-Negative Rods (GNR)

- Each new generation of Cephalosporins have greater activity on GNR through new forms of beta-lactam
 - Resistance develops to new beta-lactams by new forms of beta-lactamases
- GNR are now resistant to 3rd generation Cephalosporins (e.g., cefotaxime, ceftazidime, ceftriaxone) and Monobactams (e.g., aztreonam) by ESBLs
- ESBL producing GNR remain susceptible to cephamycins (e.g., cefoxitin, cefotetan, cefmetazole) and carbapenems (e.g., meropenem, imipenem)

1.https://www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH%20Document%20Library/2019_11_Intro.Micro_Approved02.22.19.pdf

Tuberculosis

- The **Mantoux tuberculin skin test** (TST) one method of determining whether a person is infected with *Mycobacterium tuberculosis*.
- Interferon-Gamma Release Assays (IGRAs) Blood Tests for TB Infection

Interferon-Gamma Release Assays (IGRAs) are whole-blood tests that can aid in diagnosing *Mycobacterium tuberculosis* infection.

- QuantiFERON®-TB Gold In-Tube test (QFT-GIT)
- T-SPOT[®].TB test (T-Spot)

Tuberculosis (2)

- Sputum Acid Fast Bacillus (AFB)
 - Distinguished bacteria that retains stain in the absence of an acid decolorizer
 - Present with mycobacterium species i.e., Tuberculosis, Avium, etc.
 - Few bacteria are acid-fast, making acid-fastness useful in diagnostics
 - Provider order: Sputum AFB x3
- Negative smears do not exclude TB disease.
 - When acid-fast bacilli are seen in a smear, they are counted.
 - According to the number of acid-fast bacilli seen at a certain magnification, the smears are classified as 4+, 3+, 2+, or
 1+. The greater the number the more infectious the patients

Rapid Lab Tests

- Antigen testing
 - Always follow positive with confirmatory test
- Polymerase Chain Reaction (PCR) Assay
 - Makes thousands of copies of a DNA segment specific to an organism so it can be detected by identifying tests
 - Available for a number of bacterial and viral pathogens
 - Highly sensitive; may not indicate viability of organism
 - Expensive, but getting less so

1. https://www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH%20Document%20Library/2019_11_Intro.Micro_Approved02.22.19.pdf

Microbiology Resource

Programming

Session	Date (2022)	Торіс
Week 1	March 9 th , 2022	Personal Protective Equipment (PPE)
Week 2	March 16 th , 2022	Office Hours
Week 3 (tod	March 23 rd , 2022	Introduction to QAPI in SNFs
Week 4	March 30 th , 2022	Office Hours
Week 5	April 6 th , 2022	Introduction to Microbiology
Week 6	April 13 th , 2022	Office Hours
Week 7	April 20 th , 2022	Environmental Services (EVS)
Week 8	April 27 th , 2022	Office Hours
Week 9	May 4 th , 2022	Multi-Drug Resistant Organisms (MDRO)
Week 10	May 11 th , 2022	Office Hours

Reminder

The purpose of this Learning and Communication Series is to **review core infection prevention practices** (beyond COVID-19) that must be used in all care settings, and to **foster discussion** among LA County Skilled Nursing Facilities about infection control practices.

We would like to remind everyone that the LAC DPH SNF COVID-19 Guidance has been updated as of [03/31/2022]. Please take time to review this updated information. We will not be reviewing COVID-19 guidelines (including CDPH AFLs) during these sessions.

Link to Guidelines:

http://publichealth.lacounty.gov/acd/ncorona2019/healthfacilities/snf/prevention/

Questions

