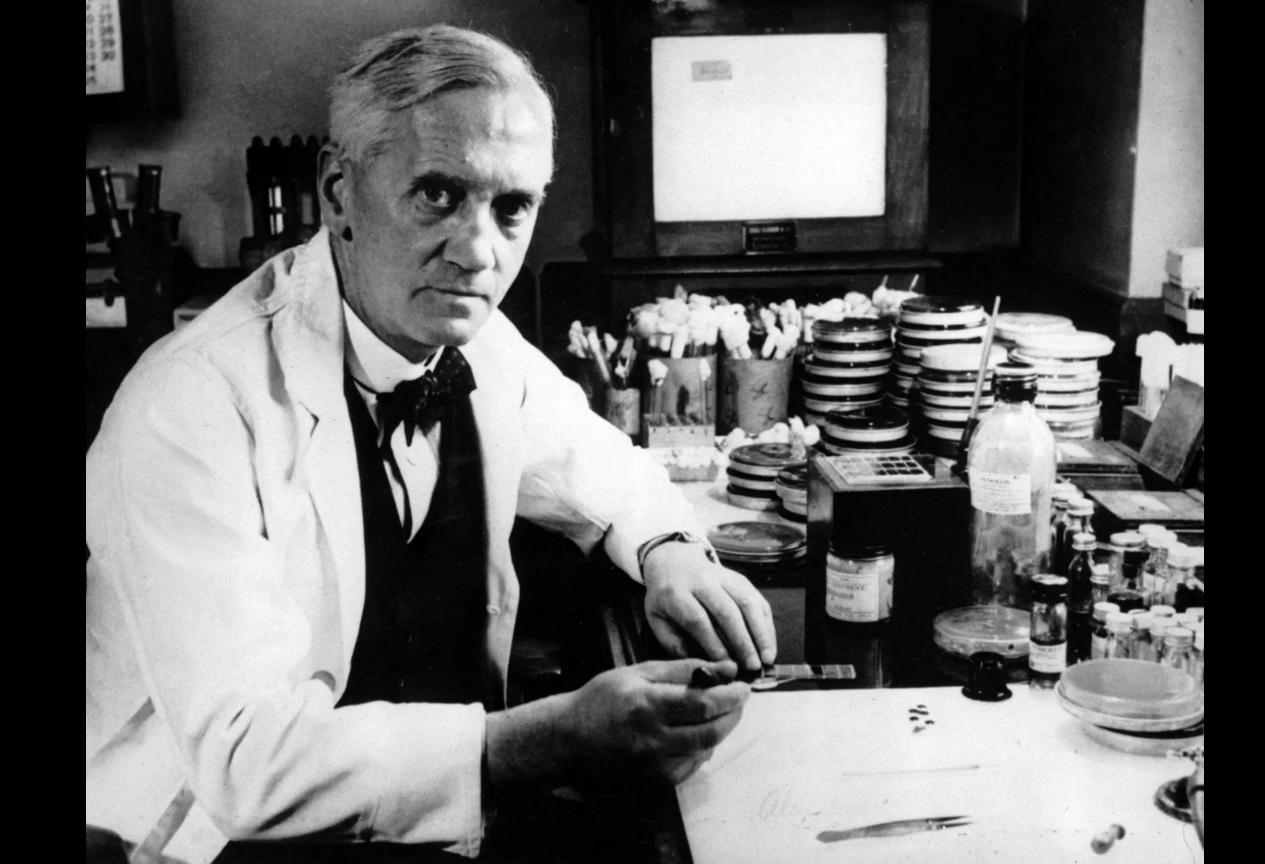
# Horizontal infection control measures: **Decolonization as Infection Prevention**

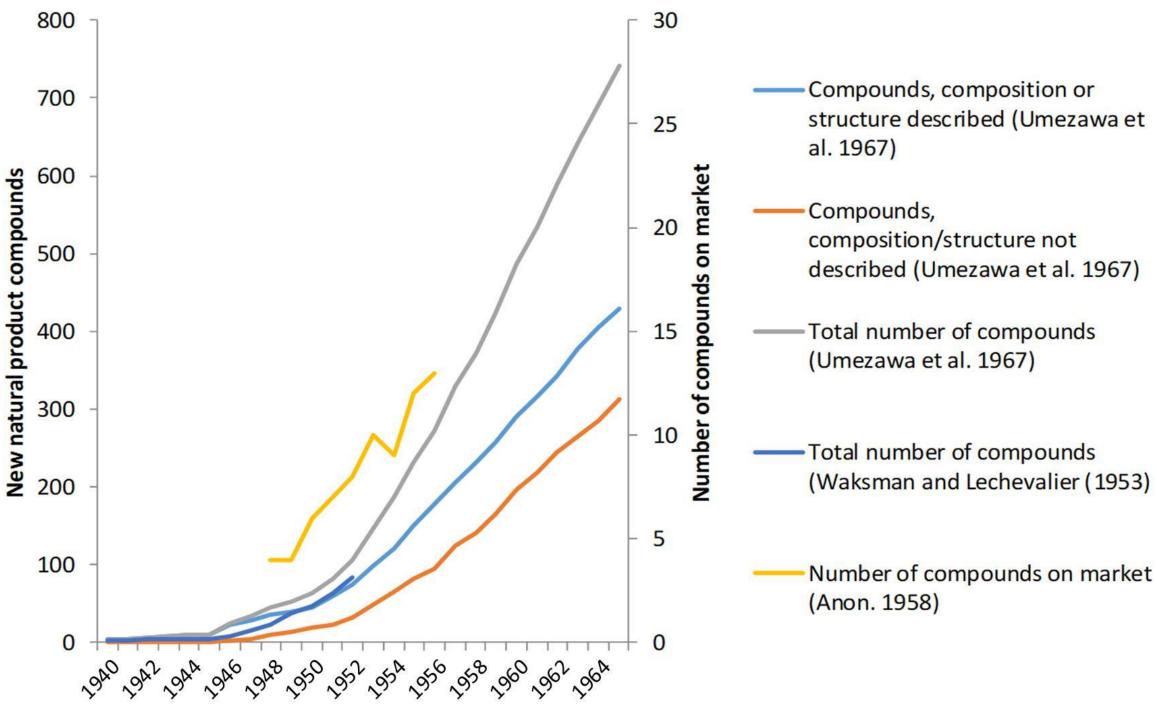
Loren G. Miller M.D., M.P.H. **Professor of Medicine** David Geffen School of Medicine at UCLA Chief, Division of Infectious Diseases Harbor-UCLA Medical Center

# Topics to Be Discussed

• MDRO colonization in hospitals, SNFs

Consequences of MDRO colonization

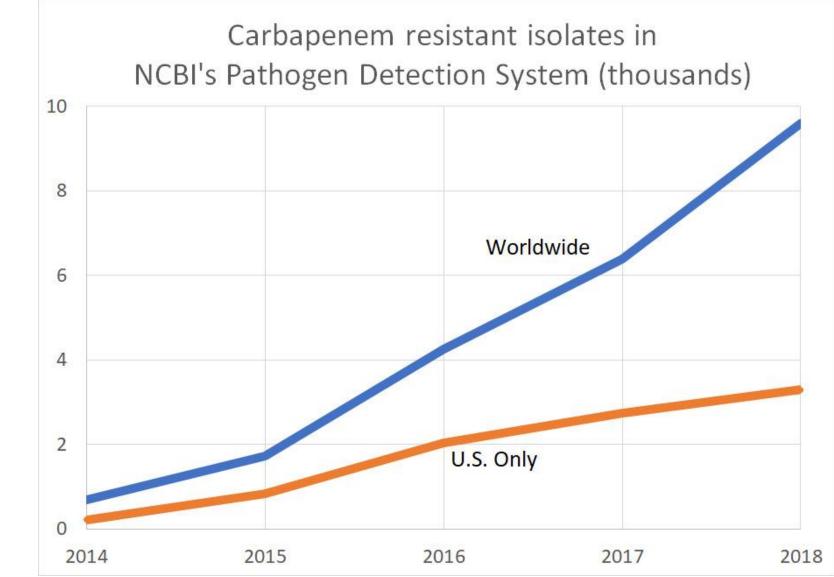

Decolonization as prevention


# Topics to Be Discussed

• MDRO colonization in hospitals, SNFs

Consequences of MDRO colonization

Decolonization as prevention






Leisner JJ. Front Microbiol 2020; 11:976.

# Prevalence of

# **Carbapenem-Resistant Pathogens**



https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance



# Prevalence of Penicillin-Resistant S. aureus

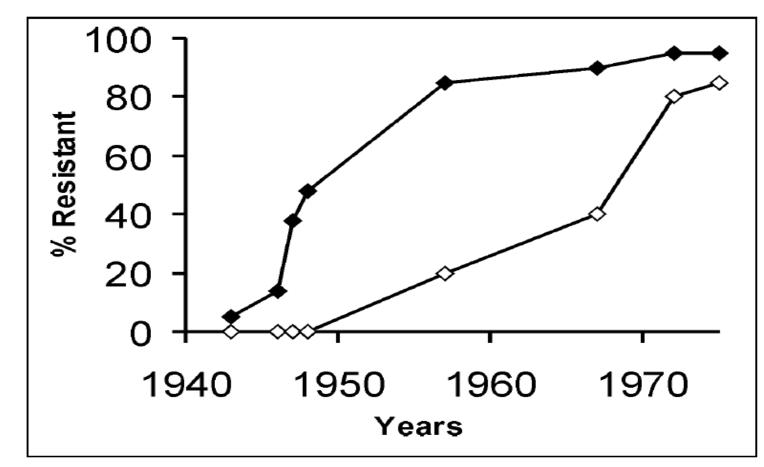



Figure. Secular trends of approximate prevalence rates for penicillinase-producing, methicillin-susceptible strains of Staphylococcus aureus in hospitals (closed symbols) and the community (open symbols).

Chambers HF. *Emerg Infect Dis* 2001; 7:178-182

### 6 of the 18 most alarming antibiotic resistance threats cost the U.S. more than \$4.6 billion annually



Vancomycinresistant Enterococcus (VRE)

Carbapenemresistant Acinetobacter species (CRAsp)



Methicillinresistant Staphylococcus aureus (MRSA)

Carbapenemresistant Enterobacterales (CRE)



Extended-spectrum cephalosporin resistance in Enterobacterales suggestive of extendedspectrum β-lactamase (ESBL) production



### www.cdc.gov/DrugResistance

### Multidrugresistant (MDR) Pseudomonas aeruginosa



**U.S.** Department of Health and Human Services Centers for Disease Control and Prevention

### Misuse of **ANTIBIOTICS** puts us all at risk.

Taking antibiotics when you don't need them speeds up antibiotic resistance. Antibiotic resistant infections are more complex and harder to treat. They can affect anyone, of any age, in any country.

Always seek the advice of a healthcare professional before taking antibiotics.





# World Health Organization

# **Projected Antibiotic Consumption**



## **MDRO Colonization/Contamination**

- Growing number of MDROs (more than just MRSA!)
- Carriage associated with higher infection risk
- Carriers commonly shed MDROs
  - -HCW hands
  - -Objects



13

## **MDRO Colonization/Contamination**

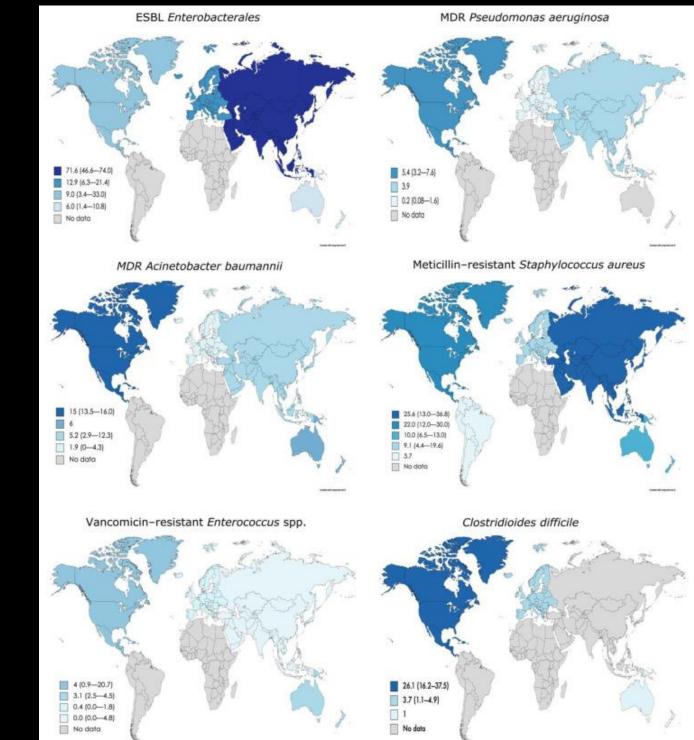
- Contamination of objects hard to remove
- Decolonization is time consuming

-screen, treat

 Need a broad solution, one that prevents transmission and reduces infections in carriers



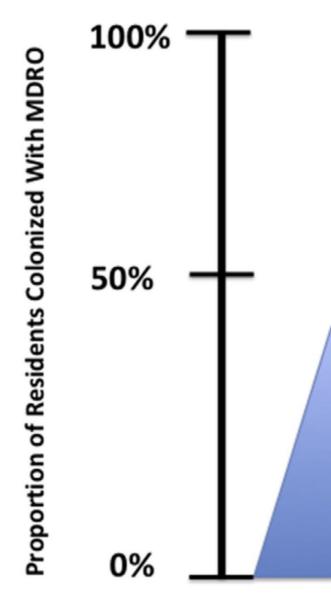
14

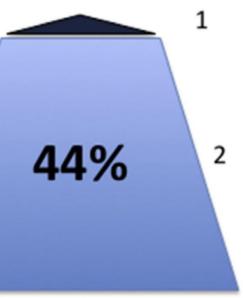

## **MDRO Colonization in Hospitals**

- MDRO colonization in hospitals is increasing
- 5 >20% of hospitalized patients have > 1 MDRO
- MDRO colonization in ICU > non-ICU
- Active surveillance for MDROs reveals many MRDOcolonized patient that were previously *not* identified

https://www.cdc.gov/infectioncontrol/guidelines/mdro/epidemiology.html Hachimi A et al. PAMJ-Clinical Med 2021; 5: 1 Kapsar T et al. BMC Antimicrob Resistance and Infect Control 2015; 4: 31




# Prevalence of MDRO colonization in LTCFs




### Rodriguez-Villodres A et al. Antibiotics 2021; 10: 680

# "Iceberg" Effect of Colonization

- Survey of 28 SoCal NHs
- 48% of residents MDRO colonized lacksquare
  - 4% known to be MDRO colonized based on previous care/medical records
  - 44% detected only by active surveillance cultures





# Topics to Be Discussed

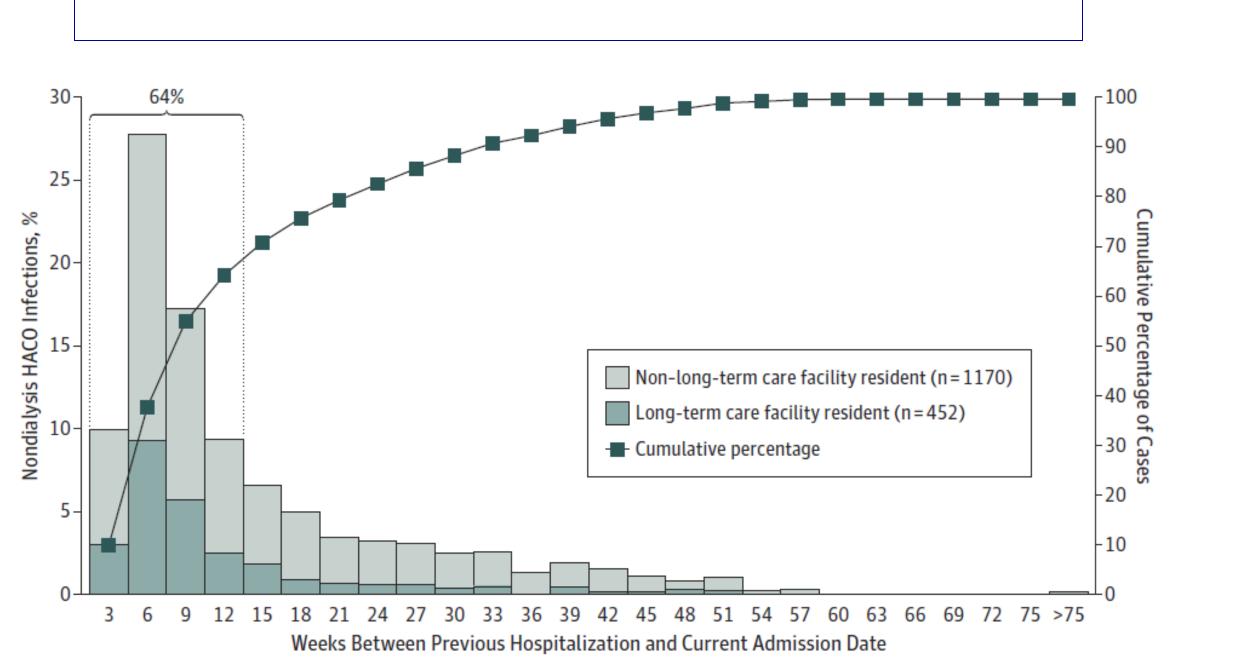
• MDRO colonization in hospitals, SNFs

Consequences of MDRO colonization

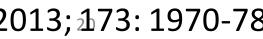
Decolonization as prevention

## **MDRO Colonization and Infection Risk**

- MRSA colonization in hospitalized pt's assd with ~30% MRSA *infection* risk
- VRE colonization a risk factor for VRE infection


-5 – 10 x increased risk compared to non-VRE colonized pt's

 ESBL colonization a risk factor for ESBL infection -OR = 9.6 [95% CI 2.9 - 33.3


> Milstone AM A et al. Clin Infect Dis 2011; 53: 853-59 Amberpet R et al. J Lab Physicians 2018; 10:89-94 Massart N et al. Eur J Clin Microbiol Infect Dis 202; 29: 889-95



### **Post-Discharge MRSA Infection Risks**



### Dantes R et al. *JAMA Int Med* 2013; 173: 1970-78



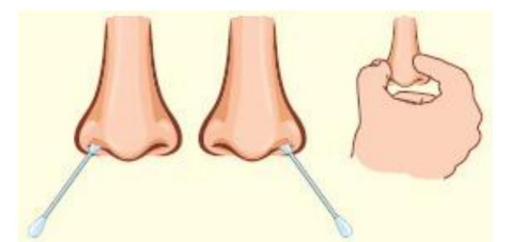
# **Source Control**

- Numerous resistant pathogens
- Shedding is common and persistent
- Contamination hard to remove
- Need a broad, simple solution
- Impact carriers not just prevent new carriers

# Topics to Be Discussed

• MDRO colonization in hospitals, SNFs

Consequences of MDRO colonization


Decolonization as prevention

### Patient Instructions: Staphylococcus aureus Decolonization

Please follow the instructions below to decolonize for Staphylococcus aureus.

### Nasal Ointment – Bactroban (Mupirocin 2%)

- 1. You will be provided with prescription for Bactroban or may be provided with a tube of the nasal ointment.
- Use enough ointment to coat the inside of the nostril every time you apply the ointment.
- 3. Put ointment on the tip a cotton swab.
- 4. Apply ointment to inside of one nostril.
- 5. Gently press nostril together and release several times (for about a minute) to spread the ointment in the nostril.
- 6. Repeat process in the other nostril using the other end of the cotton swab or a new swab.





## **Advantages of Decolonization**

- Broad vs targeted intervention
- Obviates screening
- Embedded in routine bathing activities
- Reduces shedding
- Reduces contamination
- Reduces transmission
- Reduces infection

### Prevention of Colonization and Infection by Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae in Long-term Acute-Care Hospitals

Mary K. Hayden,<sup>1,2</sup> Michael Y. Lin,<sup>1</sup> Karen Lolans,<sup>2</sup> Shayna Weiner,<sup>1</sup> Donald Blom,<sup>1</sup> Nicholas M. Moore,<sup>3</sup> Louis Fogg,<sup>4</sup> David Henry,<sup>5</sup> Rosie Lyles,<sup>6</sup> Caroline Thurlow,<sup>1</sup> Monica Sikka,<sup>1</sup> David Hines,<sup>7</sup> and Robert A. Weinstein<sup>1,6</sup>; for the Centers for **Disease Control and Prevention Epicenters Program** 

### 50% decline in acquisition 56% decline in bacteremia

Hayden MK. Clin Infect Dis 2015 Apr 15;60(8):1153-61.



## What is Decolonization?

- Use of topical antiseptics to reduce the bacterial bioburden on the body to prevent carriage and infection
- Commonly
  - Chlorhexidine (CHG) for skin and wound bathing
  - Mupirocin or iodophor for nasal use
- Used in vulnerable times, high risk populations
- Active against MDROs
- CHG and iodophor used in healthcare for 60+ years
- Strong safety record



## **Chlorhexidine Guidance**

- Dental gingivitis, periodontal disease
- Central line skin prep
- Surgical skin prep
- Surgical pre-operative bathing
- Wound cleanser
- ICU bathing to reduce microbial burden and infection



### **ICU Decolonization Evidence Summary**

| Author    | Study Year  | Study Type    | Hospital | ICU | Ν       | Findings                                                                       | Publicat                        |
|-----------|-------------|---------------|----------|-----|---------|--------------------------------------------------------------------------------|---------------------------------|
| Vernon    | 10/02-12/03 | Observational | 1        | 1   | 1,787   | 65% less VRE acquisition<br>40-70% less VRE on skin,<br>HCW hands, environment | Arch Intern M<br>166:306-312    |
| Climo     | 12/04-1/06  | Observational | 4        | 6   | 5,293   | 66% less VRE BSI<br>32% less MRSA acquisition<br>50% less VRE acquisition      | Crit Care Med<br>37:1858–1865   |
| Bleasdale | 12/05-6/06  | Observational | 1        | 2   | 836     | 61% less primary BSI                                                           | Arch Intern M<br>167(19):2073-: |
| Popovich  | 9/04-10/06  | Observational | 1        | 1   | 3,816   | 87% less CLABSI<br>41% less blood contaminants                                 | ICHE 2009;<br>30(10):959-63     |
| Climo     | 8/07-2/09   | Cluster RCT   | 6        | 9   | 7,727   | 23% less MRSA/VRE<br>acquisition                                               | N Engl J Med 2<br>368:533-42    |
| Milstone  | 2/08-9/10   | Cluster RCT   | 5        | 10  | 4,947   | 36% less total BSI <mark>(</mark> as treated)                                  | Lancet. 2013;<br>381(9872):109  |
| Huang     | 1/09-9/11   | Cluster RCT   | 43       | 74  | 122,646 | 37% less MRSA clinical cultures<br>44% less all-cause BSI                      | N Engl J Med<br>368:2255-2265   |



### ation

### Med 2006;

- d 2009;
- 5
- Med 2007;
- 3-2079

2013;

### 99-106

d 2013 55

## **Preceding Decolonization Trials**

### REDUCE MRSA ICU Trial<sup>1</sup>

- > 43 hospital cluster randomized trial, 75,000 patients
- > Universal decolonization with chlorhexidine (CHG) baths and nasal mupirocin  $\rightarrow$  44% lower bacteremia, 37% lower MRSA

### ABATE Infection Trial<sup>2</sup>

- > 53 hospital cluster randomized trial, 339,000 patients
- $\succ$  In patients with medical devices, 37% reduction in MRSA and VRE, 32% reduction in all-cause bloodstream infection

### CLEAR Trial <sup>3</sup>

- > Individual RCT of 2,121 recently hospitalized MRSA carriers
- > Serial decolonization led to 30% reduction in MRSA infection
- > NNT ~30 to avoid one infection or hospitalization

<sup>1</sup> Huang S et al. N Engl J Med 2013:368:2255-2265

<sup>&</sup>lt;sup>2</sup> Huang S et al. Lancet 2019;393(10177):1205-1215

<sup>&</sup>lt;sup>3</sup> Huang S et al. N Engl J Med 2019: 380(7):638-50

### **ORIGINAL ARTICLE**

### Decolonization in Nursing Homes to Prevent Infection and Hospitalization

L.G. Miller, J.A. McKinnell, R.D. Singh, G.M. Gussin, K. Kleinman, R. Saavedra, J. Mendez, T.D. Catuna, J. Felix, J. Chang, L. Heim, R. Franco, T. Tjoa, N.D. Stone, K. Steinberg, N. Beecham, J. Montgomery, D.A. Walters, S. Park, S. Tam, S.K. Gohil, P.A. Robinson, M. Estevez, B. Lewis, J.A. Shimabukuro, G. Tchakalian, A. Miner, C. Torres, K.D. Evans, C.E. Bittencourt, J. He, E. Lee, C. Nedelcu, J. Lu, S. Agrawal, S.G. Sturdevant, E. Peterson, and S.S. Huang

### ABSTRACT

### BACKGROUND

Nursing home residents are at high risk for infection, hospitalization, and colonization with multidrug-resistant organisms.

### METHODS

We performed a cluster-randomized trial of universal decolonization as compared with routine-care bathing in nursing homes. The trial included an 18-month baseline period and an 18-month intervention period. Decolonization entailed the use of chlorhexidine for all routine bathing and showering and administration of nasal povidone-iodine twice daily for the first 5 days after admission and then twice daily for 5 days every other week. The primary outcome was transfer to a hospital due to infection. The secondary outcome was transfer to a hospital for any reason.

The authors' full names, academic degrees, and affiliations are listed in the Appendix. Dr. Miller can be contacted at lgmiller@ucla.edu or at the Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 W. Carson St., Box 466, Torrance, CA 90509.

This article was published on October 10, 2023, at NEJM.org.

N Engl J Med 2023;389:1766-77.





## **The PROTECT Trial:**

**A Cluster Randomized Clinical Trial of Decolonization of Nursing Homes Residents to Prevent Infection and Hospitalization: Focus on Microbiologic Outcomes** 

Loren G. Miller MD MPH Lundquist Institute at Harbor-UCLA Medical Center, Torrance CA for the PROTECT Trial Team



## **Decolonization Trials**

- Targeted Prevention
  - $\blacktriangleright$  Recurrent *S. aureus* infection<sup>1</sup>
  - $\blacktriangleright$  Pre-operative *S. aureus* carriers <sup>2-3</sup>
- Universal Prevention
  - ➢ ICU <sup>4-6</sup>
  - ➢ Non-ICU<sup>7</sup>
  - Post-discharge<sup>8</sup>

<sup>1</sup>Liu C CID 2011;52:285-92 (IDSA Guideline) <sup>2</sup> Bode LGM NEJM 2010;362:9-17 <sup>3</sup>Perl T NEJM 2002;346:1871-7 <sup>4</sup>Climo M NEJM 2013;368:533-42

<sup>5</sup> Milstone A Lancet 2013;381:1099-106 <sup>6</sup> Huang SS et al. NEJM 2013;368:2255-65 <sup>7</sup> Huang SS et al. Lancet 2019;393(10177):1205-15 <sup>8</sup>Huang SS et al. NEJM 2019;380(7):638-50

## **Need to Prevent Nursing Home Infections**

- 3 million healthcare-associated infections (HAIs) estimated to occur in nursing homes (NHs) annually in U.S.
- Each year, U.S. NH HAIs associated with:
  - ► 150,000 hospital admissions
  - **≻**380,000 deaths

https://health.gov/sites/default/files/2019-09/hai-action-plan-ltcf.pdf Strausbaugh LJ, Joseph CL. ICHE 2000; 21(10):674-9. Magaziner J et al. JAGS. 1991; 39(11):1071-8. Heudorf U et al. Euro Surveill. 2012; 17(35). McKinnell JA et al. CID 2019; 69(9):1566-73.



## **Need to Prevent Nursing Home Infections**

- NHs care for the highly vulnerable:
  - elderly age
  - high risk comorbid conditions
  - high multidrug-resistant organism (MDRO) prevalence
    - MRSA, VRE, ESBL producing gram-negatives, CRE
  - limited self hygiene
- 65% of nursing home residents harbor an MDRO

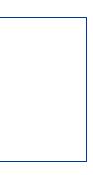
Strausbaugh LJ, Joseph CL. ICHE 2000; 21(10):674-9. Magaziner J et al. JAGS. 1991; 39(11):1071-8. Heudorf U et al. Euro Surveill. 2012; 17(35). McKinnell JA et al. CID 2019; 69(9):1566-73.



# The PROTECT Trial

### **Trial Design**

- 28 nursing home cluster randomized trial
- Orange County and Los Angeles County nursing homes
- 18-month baseline, 18-month intervention period  $\bullet$


### **Arm 1: Routine Care**

Usual practice for showering/bathing  $\bullet$ 

### **Arm 2: Decolonization**

- CHG bathing for all residents (on admit, then per routine)  $\bullet$
- Nasal iodophor x 5d bid, facility-wide every other week

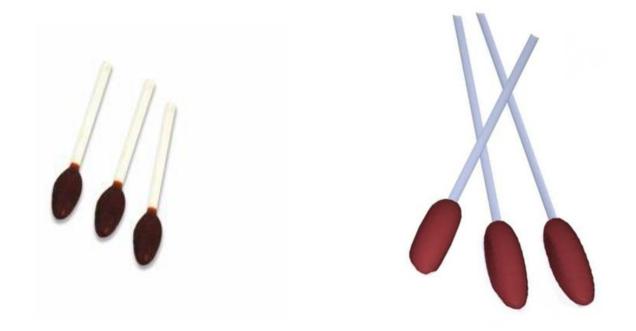
https://clinicaltrials.gov/ct2/show/NCT03118232 Funded: AHRQ



### **Intervention: Replacing Soap with CHG**

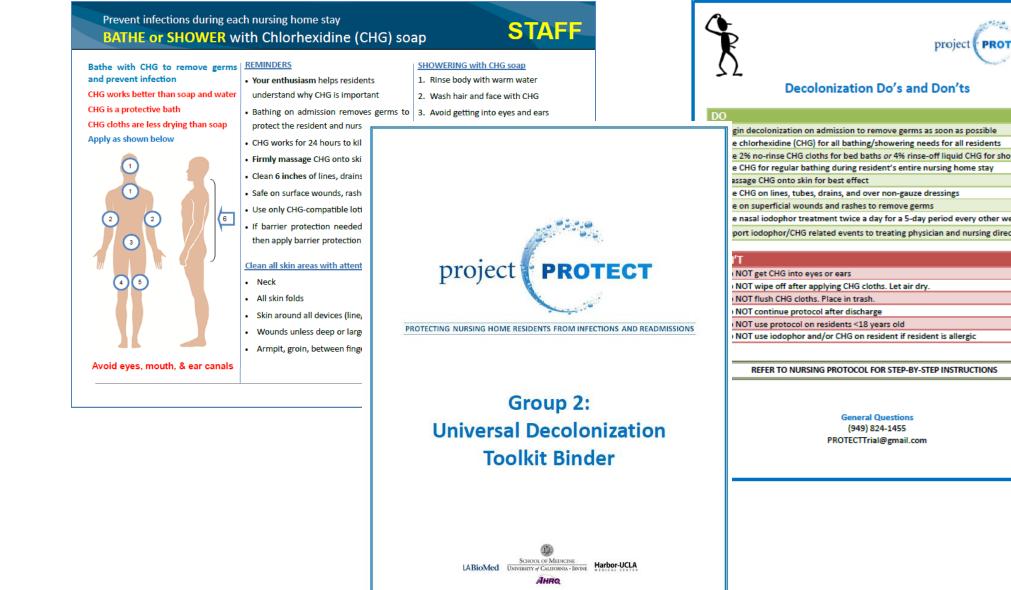
- Liquid CHG for showering
  - 4% rinse off CHG
- CHG cloths for bed bathing
  - 2% leave on CHG





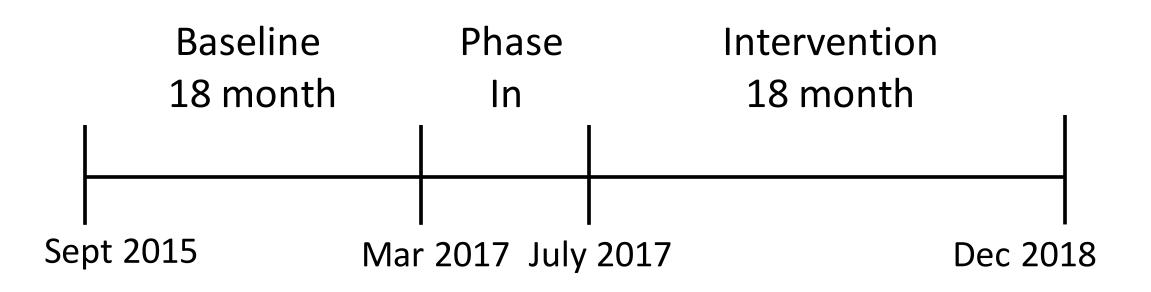

2% cloths for bath




### **Intervention: Nasal Decolonization**

- 10% povidone-iodine swabs (iodophor) to each nostril
- Twice daily for entire facility
- On admission and M-F every other week






## **Implementation Aids**



| отест             | - |
|-------------------|---|
| s<br>showers      |   |
| r week<br>irector |   |
|                   |   |
|                   |   |

# **Baseline and Intervention Periods**



Allows a "difference in differences" evaluation where intervention data from each participating NH is compared to its own baseline period, and those changes are compared across study groups. This helps account for unmeasured or imbalanced confounders



# **Outcomes: Publicly Reported Data**

### **Primary Outcome**

• Hospital transfers due to infection (% of discharges to a hospital due to infection)

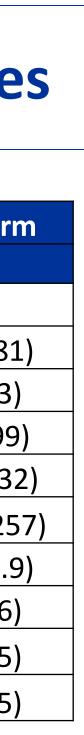
### **Secondary Outcome**

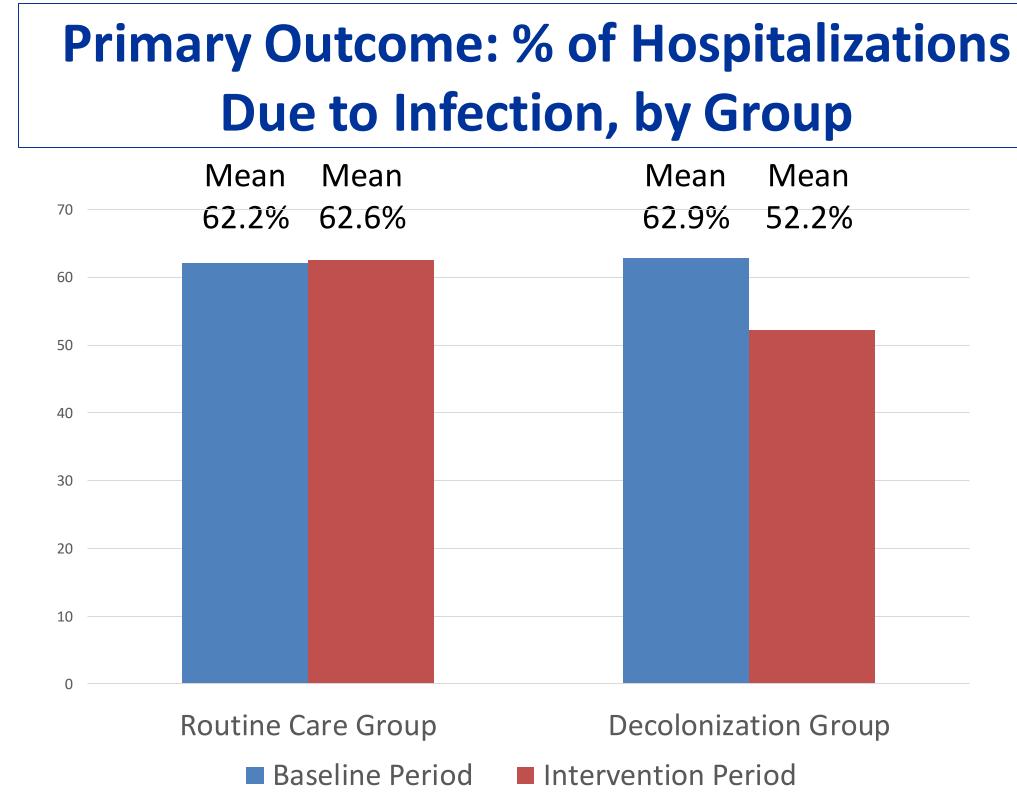
All hospital transfers (% of discharges to a hospital)

### Additional Outcomes (secondary manuscripts)

- MDRO prevalence (MRSA, VRE, ESBL, CRE)<sup>1</sup>
- Outcomes stratified by long vs short stay residents
- Emergency department visits due to infection



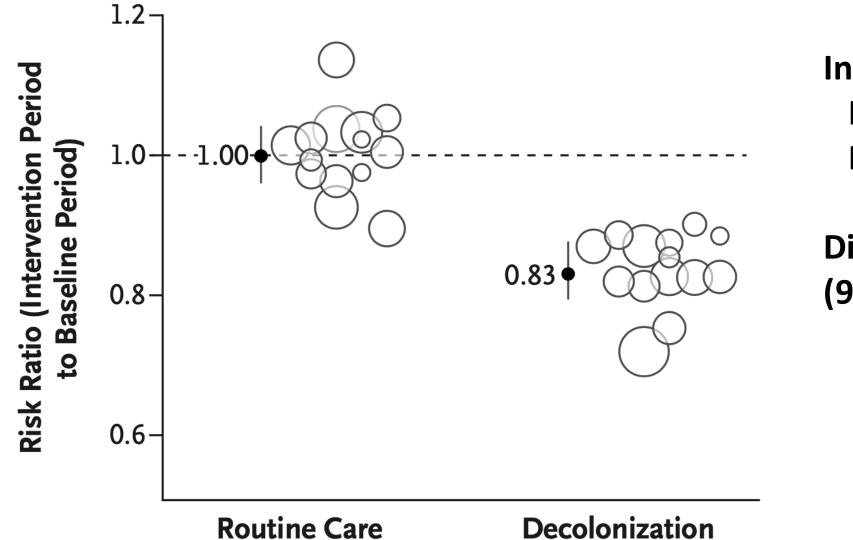

# Analysis


- Main results are as-randomized, unadjusted
- Difference in differences approach  $\bullet$ 
  - Compared baseline to intervention period within facility and then compared aggregated results across arms
  - $\succ$  Generalized linear mixed models assessing the difference in differences of each outcome using an arm by period interaction term and clustering by NH
- Two outcomes  $\bullet$ 
  - Significance level set at 0.025 due to multiple comparisons
  - > Powered for 15% difference in infection, 8% difference in hospitalization



# **Characteristics of PROTECT Facilities**

| Variable                     | <b>Decolonization Arm</b> | Routine Ar          |
|------------------------------|---------------------------|---------------------|
|                              | Median (Range)            |                     |
| Number of Facilities         | 14                        | 14                  |
| Mean Age                     | 76.6 (72, 79)             | 75.6 (71, 8         |
| % Male                       | 42 (38, 47)               | 44 (37, 53          |
| Mean Licensed Beds           | 99 (59 <i>,</i> 195)      | 99 (69 <i>,</i> 299 |
| Average Daily Census         | 104 (57, 215)             | 101 (71, 23         |
| Length of Stay               | 205 (185, 298)            | 219 (203, 25        |
| Elixhauser Comorbidity Score | 3.6 (2.8, 4.7)            | 3.6 (3.0, 4.        |
| % Diabetes                   | 37 (30, 41)               | 41 (34, 46          |
| % Chronic Lung Disease       | 23 (18, 33)               | 22 (19, 25          |
| % Renal Failure              | 20 (15, 24)               | 20 (18, 25          |





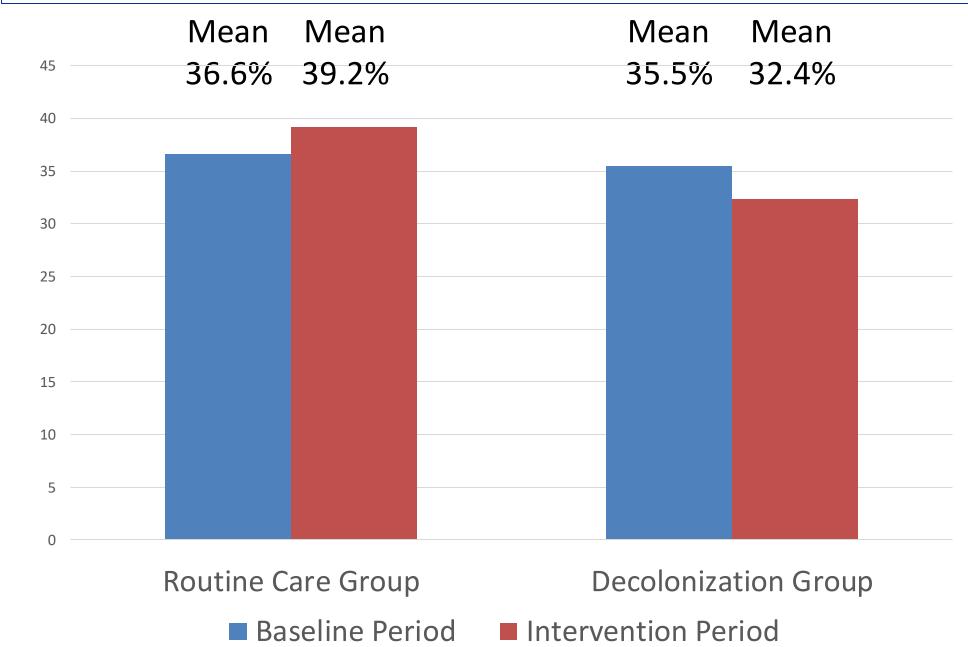



# % Hospital Transfers Due to Infection





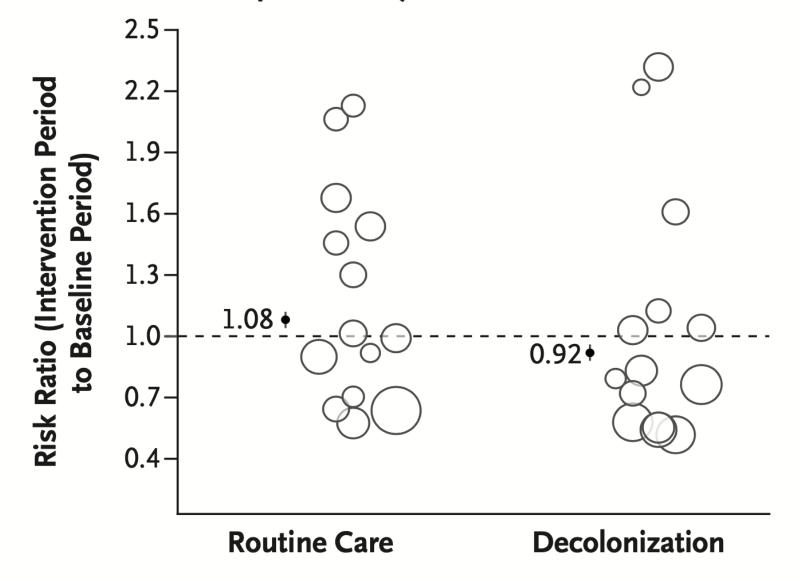
Intervention vs Baseline (RR) Routine Care = 1.00 (95% CI 0.96-1.04)


**Difference in Differences: 16.6%** (95% CI: 11.0% to 21.8%, P<0.001)

Miller LG et al. New Engl J Med 2023; 389:1766-77



# Decolonization = 0.83 (95% CI 0.79-0.88)


# **Secondary Outcome: % of Discharges to a** Hospital, by Group





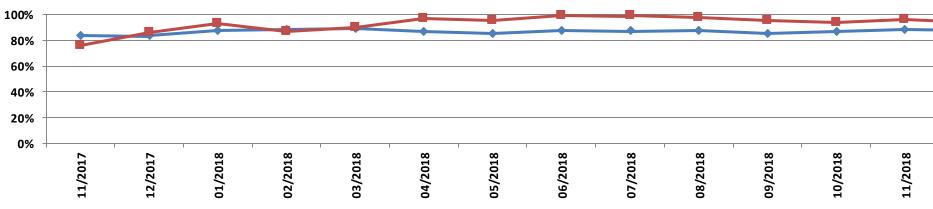
# **Transfer to a Hospital for Any Reason**

Transfer to a Hospital for Any Reason В

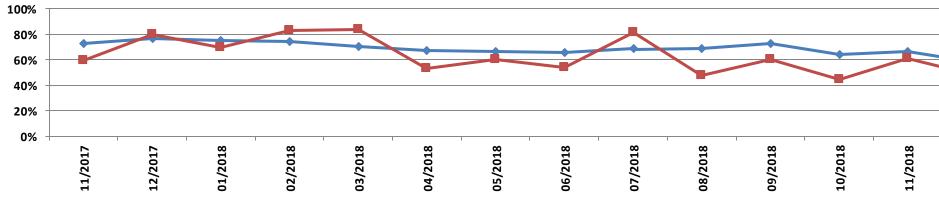


**Intervention vs Baseline (RR)** Routine Care = 1.08 (95% CI 1.04-1.12)

**Difference in Differences: 14.6%** (95% CI: 9.7% to 19.2%, P<0.01)


Miller LG et al. New Engl J Med 2023; 389:1766-77




# Decolonization = 0.92 (95% CI 0.88-0.96)

## **Intervention: CHG & Iodophor Compliance**

### CHG



### **Iodophor**









# Conclusions

- Universal nursing home resident decolonization with CHG for routine bathing and showering
  - 17% Reduction in % of hospitalizations due to infection
  - 15% Reduction in % of discharges to a hospital
- NNTs = 9.7, 8.9 (as treated 6.8 and 5.8)

# **Conclusions (2)**

- Mechanistically,  $\downarrow$  in clinical infections likely related to  $\downarrow$  in **MDRO** colonization
- CHG  $\downarrow$  skin bacterial bioburden > > soap & water
- Iodophor  $\downarrow$  MRSA nasal colonization

## So

- What about adding CHG to mupirocin in HD patients?
  - Mupirocin mono-Rx antiquated
  - Data from other populations suggest  $\downarrow$  infection rate
- Challenges to HD patients do CHG bathing?
- Does decolonization reduce non-*S. aureus* infections? lacksquare
- Other...