ANTIBIOTIC STEWARDSHIP

Paul D. Holtom, MD
Professor of Medicine and Orthopaedics
USC Keck School of Medicine

THE PROBLEM

- •700,000 people die each year from antibiotic resistant infections
 - Projected to be >10 million/yr in 2050
- Bacteria exposed to antibiotics quickly develop resistance
- Much antimicrobial use in the hospital is either unnecessary or inappropriate

What is Antibiotic Stewardship?

- New TJC standards
 - "New Antimicrobial Stewardship Standards"
 - 8 elements of performance
 - Apply to all acute care hospitals as of January 1, 2017

What is Antibiotic Stewardship?

- Coordinated interventions designed to improve and measure the appropriate use of antimicrobials by promoting selection of optimal:
 - Antimicrobial drug regimen
 - Dosage
 - Duration of therapy
 - Route of administration

GOALS OF PROGRAM

- Improve patient health outcomes
- Minimize toxicity and other adverse events
- Limit the selection for antimicrobial resistant strains

What is Antibiotic Stewardship?

- It is NOT "Antibiotic Prevention"
- May reduce excessive costs attributable to suboptimal antimicrobial use

COST SAVINGS

- Effective programs show 22%-36% decrease in antimicrobial use
 - •~\$200,000-\$900,000 annual savings
- Decrease in rates of C. difficile
- Decrease in MDROs such as VRE

STRUCTURE OF PROGRAM

- ID Physician
- Clinical Pharmacist with ID training
- Others:
 - Clinical Microbiologist
 - Information Systems
 - Infection Prevention specialists

- Prospective audit with intervention and feedback
- Formulary restriction
- Preauthorization requirements

 Prospective audit with intervention and feedback

PROSPECTIVE AUDIT

- Demonstrated in 2 studies to decrease starts and duration of antibiotic use with no adverse effect on clinical outcomes
- Another study showed decrease in rate of *C. difficile* and MDRO Enterobacteriacae

PROSPECTIVE AUDIT

- Audit antimicrobial use on a daily basis
 - Review all new starts
 - Review continuations with micro lab data to assess appropriateness and length of therapy
- Intervention with prescribers
- Feedback to prescribers and Services

- Prospective audit with intervention and feedback
- Formulary restriction

FORMULARY RESTRICTION

- Most effective method of achieving the process goal of controlling antibiotic use
- Done through the Pharmacy and Therapeutics (P&T) Committee

- Prospective audit with intervention and feedback
- Formulary restriction
- Preauthorization requirements

PREAUTORIZATION

- Effectiveness depends on who is making the recommendations
- Program is not designed merely to restrict antibiotic choice, but to guide choice to the optimal antibiotic for the patient

CHALLENGES

- Push-back from physicians
- "Squeezing the Balloon"

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms
- De-escalation of therapy
- Dose optimization
- Parenteral to oral conversion
- Tracking antimicrobial resistance

Education of prescribers and patients

EDUCATION

- Essential element of any program designed to influence prescribing behavior
- Will enhance and increase acceptance of stewardship strategies

TJC Standards

- Hospitals educate staff and LIP about antimicrobial resistance and stewardship practice
- Hospitals educate patients and families regarding the appropriate use of antimicrobial medications
 - Patients' expectations affect physicians' prescribing behaviors
 - CDC has downloadable brochures for education

EDUCATION

 Education alone, without active intervention, is only marginally effective and has not shown a sustained impact

- Education of prescribers and patients
- Guidelines and Clinical Pathways

TJC Standards

- The hospital's ASP uses organizational approved multidisciplinary protocols
 - Focus on disease states that are of high priority and consistent with institution's goals
 - Evaluate use and outcomes of guidelines at appropriate time frames

GUIDELINES

- Impact has been difficult to measure
- Local implementation is difficult
- Guidelines must incorporate local microbiology and resistance patterns

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms

ORDER FORMS

- Shown to decrease antimicrobial use due to
 - Automatic stop orders
 - Requirement for physician justification
- Hard to implement in a paper-based charting system

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms
- De-escalation of therapy

DE-ESCALATION THERAPY

- STAGE 1
 - Administer the broadest spectrum antibiotic regimen necessary to improve outcomes

An Art in Medicine

Balance

Possible increase in resistance and toxicity with adequate (broad-spectrum) therapy

DE-ESCALATION THERAPY

STAGE 1

 Administer the broadest spectrum antibiotic regimen necessary to improve outcomes

STAGE 2

- Focus on de-escalating with theoretic goal of:
 - minimizing toxicity and resistance
 - improving cost-effectiveness

GENERAL PRINCIPLES FOR DE-ESCALATION

- Identify the organism and know its susceptibilities
- Assess and modify initial empiric regimen based on susceptibility report
- Make the decision in the context of the patient's progress on the initial regimen
- Individualize the length of therapy based on patient factors and clinical response

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms
- De-escalation of therapy
- Dose optimization

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms
- De-escalation of therapy
- Dose optimization
- Parenteral to oral conversion

IV TO ORAL CONVERSION

- Many drugs have good oral bioavailability
- Randomized studies of oral conversion in CAP and SSTIs show:
 - Significant reductions in LOS
 - Significant reductions in cost of care

- Education
- Guidelines and Clinical Pathways
- Antimicrobial order forms
- De-escalation of therapy
- Dose optimization
- Parenteral to oral conversion
- Tracking antimicrobial resistance

WHAT IS THE FUTURE FOR ASP?

New diagnostic tests

 Tests that rapidly identify MDROs (MRSA, VRE, etc) after the organism is cultured in the lab

- 2010 study with rapid PCR to detect MRSA/MSSA in blood cultures
 - Switch from vancomycin to nafcillin or cefazolin was 1.7 days shorter
 - Mean LOS was 6.2 days shorter
 - Hospital costs \$21,387 less per patient

- Tests that rapidly identify MDROs (MRSA, VRE, etc) after the organism is cultured in the lab
- Tests that rapidly identify an organism directly from a patient specimen
 - •CSF
 - Sputum
 - Stool

- Issues with RDTs
 - Need for an infrastructure that can respond to rapid identifications
 - Problems with interpretation of results
 - Many respiratory tract organisms are identified, but their significance and how to manage them is not well defined

WHAT IS THE FUTURE FOR ASP?

- New diagnostic tests
- •New antimicrobials?

WHAT IS THE FUTURE FOR ASP?

- New diagnostic tests
- •New antimicrobials?
- New and increasing resistance

#